Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
1.
Semin Nucl Med ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38853039

ABSTRACT

Positron emission tomography/magnetic resonance (PET/MRI) hybrid imaging is now available for over a decade and although the quantity of installed systems is rather low, the number of emerging applications for cardiovascular diseases is still growing. PET/MRI provides integrated images of high quality anatomical and functional assessment obtained by MRI with the possibilities of PET for quantification of molecular parameters such as metabolism, inflammation, and perfusion. In recent years, sequential co-registration of myocardial tissue characterization with its molecular data had become an increasingly helpful tool in clinical practice and an integrated device simplifies this task. This review summarizes recent developments and future possibilities in the use of the PET/MRI in the diagnosis and treatment of cardiovascular disorders.

2.
Front Cardiovasc Med ; 11: 1352696, 2024.
Article in English | MEDLINE | ID: mdl-38404725

ABSTRACT

Background: Simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) is a novel hybrid imaging method integrating the advances of morphological tissue characterization of MRI with the pathophysiological insights of PET applications. Aim: This study evaluated the use of simultaneous 18-FDG PET/MR imaging for characterizing atherosclerotic lesions in lower extremity arterial disease (LEAD). Methods: Eight patients with symptomatic stenoses of the superficial femoral artery (SFA) under simultaneous acquisition of 18-FDG PET and contrast-enhanced MRI using an integrated whole-body PET/MRI scanner. Invasive plaque characterization of the SFA was performed by intravascular imaging using optical coherence tomography. Histological analysis of plaque specimens was performed after directional atherectomy. Results: MRI showed contrast enhancement at the site of arterial stenosis, as assessed on T2-w and T1-w images, compared to a control area of the contralateral SFA (0.38 ± 0.15 cm vs. 0.23 ± 0.11 cm; 1.77 ± 0.19 vs. 1.57 ± 0.15; p-value <0.05). On PET imaging, uptake of 18F-FDG (target-to-background ratio TBR > 1) at the level of symptomatic stenosis was observed in all but one patient. Contrast medium-induced MR signal enhancement was detected in all plaques, whereas FDG uptake in PET imaging was increased in lesions with active fibroatheroma and reduced in fibrocalcified lesions. Conclusion: In this multimodal imaging study, we report the feasibility and challenges of simultaneous PET/MR imaging of LEAD, which might offer new perspectives for risk estimation.

3.
Semin Nucl Med ; 54(1): 132-140, 2024 01.
Article in English | MEDLINE | ID: mdl-37652782

ABSTRACT

PET/MRI is a relevant application field for prostate cancer management, offering advantages in early diagnosis, staging, and therapy planning. Despite drawbacks such as higher costs, longer acquisition time, and the need for skilled personnel, the technical integration of PET and MRI provides valuable information for detecting primary tumors, identifying metastases, and characterizing the disease, leading to more accurate staging and personalized treatment strategies. However, PET/MRI adoption has been slow, but ongoing technological advancements and AI integration might overcome challenges and improve clinical utility. As precision medicine gains importance in oncology, PET/MRI's multiparametric data can tailor treatment plans to individual patients, providing a comprehensive assessment of tumor biology and aggressiveness for more effective therapeutic strategies.


Subject(s)
Prostatic Neoplasms , Male , Humans , Neoplasm Staging , Prostatic Neoplasms/pathology , Positron-Emission Tomography , Magnetic Resonance Imaging
4.
Semin Nucl Med ; 53(5): 586-598, 2023 09.
Article in English | MEDLINE | ID: mdl-37268498

ABSTRACT

Noninvasive imaging techniques, such as SPECT, PET, CT, echocardiography, or MRI, have become essential in cardiovascular research. They allow for the evaluation of biological processes in vivo without the need for invasive procedures. Nuclear imaging methods, such as SPECT and PET, offer numerous advantages, including high sensitivity, reliable quantification, and the potential for serial imaging. Modern SPECT and PET imaging systems, equipped with CT and MRI components in order to get access to morphological information with high spatial resolution, are capable of imaging a wide range of established and innovative agents in both preclinical and clinical settings. This review highlights the utility of SPECT and PET imaging as powerful tools for translational research in cardiology. By incorporating these techniques into a well-defined workflow- similar to those used in clinical imaging- the concept of "bench to bedside" can be effectively implemented.


Subject(s)
Cardiovascular System , Heart , Humans , Tomography, Emission-Computed, Single-Photon/methods , Positron-Emission Tomography/methods , Magnetic Resonance Imaging/methods
5.
J Nucl Cardiol ; 30(6): 2327-2337, 2023 12.
Article in English | MEDLINE | ID: mdl-37165114

ABSTRACT

BACKGROUND: Myocardial perfusion defect (MPD) is common in chronic Chagas cardiomyopathy (CCC) and is associated with inflammation and development of left ventricular systolic dysfunction. We tested the hypothesis that pentoxifylline (PTX) could reduce inflammation and prevent the development of MPD in a model of CCC in hamsters. METHODS AND RESULTS: We investigated with echocardiogram and rest myocardial perfusion scintigraphy at baseline (6-months after T. cruzi infection/saline) and post-treatment (after additional 2-months of PTX/saline administration), female Syrian hamsters assigned to 3 groups: T. cruzi-infected animals treated with PTX (CH + PTX) or saline (CH + SLN); and uninfected control animals (CO). At the baseline, all groups showed similar left ventricular ejection fraction (LVEF) and MPD areas. At post-treatment evaluation, there was a significant increase of MPD in CH + SLN group (0.8 ± 1.6 to 9.4 ± 9.7%), but not in CH + PTX (1.9 ± 3.0% to 2.7 ± 2.7%) that exhibited MPD area similar to CO (0.0 ± 0.0% to 0.0 ± 0.0%). The LVEF decreased in both infected groups. Histological analysis showed a reduced inflammatory infiltrate in CH + PTX group (395.7 ± 88.3 cell/mm2), as compared to CH + SLN (515.1 ± 133.0 cell/mm2), but larger than CO (193.0 ± 25.7 cell/mm2). The fibrosis and TNF-α expression was higher in both infected groups. CONCLUSIONS: The prolonged use of PTX is associated with positive effects, including prevention of MPD development and reduction of inflammation in the chronic hamster model of CCC.


Subject(s)
Chagas Cardiomyopathy , Chagas Disease , Pentoxifylline , Cricetinae , Animals , Female , Chagas Cardiomyopathy/diagnostic imaging , Pentoxifylline/pharmacology , Pentoxifylline/therapeutic use , Stroke Volume , Ventricular Function, Left , Tomography, X-Ray Computed , Inflammation , Perfusion
6.
Eur J Hybrid Imaging ; 7(1): 8, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37062775

ABSTRACT

BACKGROUND: In patients with increasing PSA and suspicion for prostate cancer, but previous negative biopsies, PET/MRI is used to test for tumours and target potential following biopsy. We aimed to determine different PSMA PET timing effects on signal kinetics and test its correlation with the patients' PSA and Gleason scores (GS). METHODS: A total of 100 patients were examined for 900 s using PET/MRI approximately 1-2 h p.i. depending on the tracer used (68Ga-PSMA-11, 18F-PSMA-1007 or 18F-rhPSMA7). The scans were reconstructed in static and dynamic mode (6 equal frames capturing "late" PSMA dynamics). TACs were computed for detected lesions as well as linear regression plots against time for static (SUV) and dynamic (SUV, SUL, and percent injected dose per gram) parameters. All computed trends were tested for correlation with PSA and GS. RESULTS: Static and dynamic scans allowed unchanged lesion detection despite the difference in statistics. For all tracers, the lesions in the pelvic lymph nodes and bones had a mostly negative activity concentration trend (78% and 68%, resp.), while a mostly positive, stronger trend was found for the lesions in the prostate and prostatic fossa following RPE (84% and 83%, resp.). In case of 68Ga-PSMA-11, a strong negative (Rmin = - 0.62, Rmax = - 0.73) correlation was found between the dynamic parameters and the PSA. 18F-PSMA-1007 dynamic data showed no correlation with PSA, while for 18F-rhPSMA7 dynamic data, it was consistently low positive (Rmin = 0.29, Rmax = 0.33). All tracers showed only moderate correlation against GS (Rmin = 0.41, Rmax = 0.48). The static parameters showed weak correlation with PSA (Rmin = 0.24, Rmax = 0.36) and no correlation with GS. CONCLUSION: "Late" dynamic PSMA data provided additional insight into the PSMA kinetics. While a stable moderate correlation was found between the PSMA kinetics in pelvic lesions and GS, a significantly variable correlation with the PSA values was shown depending on the radiotracer used, the highest being consistently for 68Ga-PSMA-11. We reason that with such late dynamics, the PSMA kinetics are relatively stable and imaging could even take place at earlier time points as is now in the clinical routine.

7.
J Nucl Cardiol ; 30(5): 2018-2028, 2023 10.
Article in English | MEDLINE | ID: mdl-36944827

ABSTRACT

BACKGROUND: Pulsed-field ablation (PFA) is a novel ablation modality for atrial fibrillation (AF) ablating myocardium by electroporation without tissue-heating. With its different mechanism of tissue ablation, it is assumed that lesion creation is divergent to thermal energy sources. 68Ga-fibroblast-activation protein inhibitor (FAPI) PET/CT targets FAP-alpha expressed by activated fibroblasts. We aimed to assess 68Ga-FAPI uptake in pulmonary veins as surrogate for ablation damage after PFA and cryoballoon ablation (CBA). METHODS: 26 patients (15 PFA, 11 CBA) underwent 68Ga-FAPI-PET/CT after ablation. Standardized uptake values (SUV) and fibroblast-activation volumes of localized tracer uptake were assessed. RESULTS: Patient characteristics were comparable between groups. In PFA, focal FAPI uptake was only observed in 3/15 (20%) patients, whereas in the CBA cohort, 10/11 (90.9%) patients showed atrial visual uptake. We observed lower values of SUVmax (2.85 ± 0.56 vs 4.71 ± 2.06, P = 0.025) and FAV (1.13 ± 0.84 cm3 vs 3.91 ± 2.74 cm3, P = 0.014) along with a trend towards lower SUVpeak and SUVmean in PFA vs CBA patients, respectively. CONCLUSION: Tissue response with respect to fibroblast activation seems to be less pronounced in PFA compared to established thermal ablation systems. This functional assessment might contribute to a better understanding of lesion formation in thermal and PFA ablation potentially contributing to better safety outcomes.


Subject(s)
Pulmonary Veins , Humans , Pulmonary Veins/diagnostic imaging , Pulmonary Veins/surgery , Gallium Radioisotopes , Positron Emission Tomography Computed Tomography , Electroporation Therapies , Fibroblasts
8.
Eur J Nucl Med Mol Imaging ; 50(8): 2537-2547, 2023 07.
Article in English | MEDLINE | ID: mdl-36929180

ABSTRACT

PURPOSE: To develop a CT-based radiomic signature to predict biochemical recurrence (BCR) in prostate cancer patients after sRT guided by positron-emission tomography targeting prostate-specific membrane antigen (PSMA-PET). MATERIAL AND METHODS: Consecutive patients, who underwent 68Ga-PSMA11-PET/CT-guided sRT from three high-volume centers in Germany, were included in this retrospective multicenter study. Patients had PET-positive local recurrences and were treated with intensity-modulated sRT. Radiomic features were extracted from volumes of interests on CT guided by focal PSMA-PET uptakes. After preprocessing, clinical, radiomics, and combined clinical-radiomic models were developed combining different feature reduction techniques and Cox proportional hazard models within a nested cross validation approach. RESULTS: Among 99 patients, median interval until BCR was the radiomic models outperformed clinical models and combined clinical-radiomic models for prediction of BCR with a C-index of 0.71 compared to 0.53 and 0.63 in the test sets, respectively. In contrast to the other models, the radiomic model achieved significantly improved patient stratification in Kaplan-Meier analysis. The radiomic and clinical-radiomic model achieved a significantly better time-dependent net reclassification improvement index (0.392 and 0.762, respectively) compared to the clinical model. Decision curve analysis demonstrated a clinical net benefit for both models. Mean intensity was the most predictive radiomic feature. CONCLUSION: This is the first study to develop a PSMA-PET-guided CT-based radiomic model to predict BCR after sRT. The radiomic models outperformed clinical models and might contribute to guide personalized treatment decisions.


Subject(s)
Gallium Radioisotopes , Prostatic Neoplasms , Male , Humans , Gallium Isotopes , Positron Emission Tomography Computed Tomography/methods , Prostatectomy , Neoplasm Recurrence, Local/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/surgery
9.
EJNMMI Res ; 13(1): 20, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36892707

ABSTRACT

BACKGROUND: PET/MRI hybrid imaging in pulmonary arterial hypertension (PAH) provides important prognostic information identifying patients who might benefit from early therapy escalation, as right ventricle (RV) metabolic alterations are linked with hemodynamics and might precede clinical deterioration. Now, we hypothesize that adequate PAH therapy escalation may result in reversal of unfavourable increased glucose uptake of RV, which is associated with improved prognosis. METHODS: Out of twenty-six initially clinically stable PAH patients who had baseline PET/MRI scans, twenty (49.9 ± 14.9 years) had second PET/MRI after 24 months. SUVRV/SUVLV ratio was used to estimate and compare cardiac glucose uptake. Occurrences of clinical endpoints (CEP), defined as death or clinical deterioration, were assessed during 48-month follow-up from baseline. RESULTS: In first 24 months of observation, sixteen patients had CEP and needed PAH therapy escalation. At follow-up visits, we observed significant improvement of RV ejection fraction (45.1 ± 9.6% to 52.4 ± 12.9%, p = 0.01), mean pulmonary artery pressure (50.5 ± 18.3 to 42.8 ± 18.6 mmHg, p = 0.03), and SUVRV/SUVLV, which tended to decrease (mean change -0.20 ± 0.74). Patients with baseline SUVRV/SUVLV value higher than 0.54 had worse prognosis in 48 months observation (log-rank test, p = 0.0007); follow up SUVRV/SUVLV > 1 predicted CEP in the following 24 months, regardless of previously escalated treatment. CONCLUSIONS: PAH therapy escalation may influence RV glucose metabolism, what seems to be related with patients' prognosis. PET/MRI assessment may predict clinical deterioration regardless of previous clinical course, however its clinical significance in PAH requires further studies. Importantly, even mild alterations of RV glucose metabolism predict clinical deterioration in long follow-up. Clinical Trial Registration ClinicalTrials.gov, NCT03688698, 05/01/2016, https://clinicaltrials.gov/ct2/show/study/NCT03688698?term=NCT03688698&draw=2&rank=1.

10.
Melanoma Res ; 33(3): 199-207, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36866631

ABSTRACT

The introduction of immunotherapy was a revolution in the treatment of metastatic melanoma. Nevertheless, there are only few clinical parameters to predict response to immunotherapy. The purpose of this study was to identify metastatic patterns that can predict response by using noninvasive 18 F-FDG PET/CT imaging. In 93 immunotherapy-treated patients, total metabolic tumor volume (MTV) was measured before and after treatment. The differences were compared to quantify therapy response. Patients were divided into seven subgroups regarding the affected organ systems. The results as well as clinical factors were evaluated in multivariate analyses. No subgroup of metastatic patterns had a significant difference in response rates, but with a trend towards poorer response regarding osseous and hepatic metastases. Osseous metastases presented with significant lower disease-specific survival (DSS) ( P = 0.001). Sole lymph node metastases were the only subgroup with MTV reduction and with significant higher DSS (57.6 months; P = 0.033). Patients, who ever developed brain metastases, showed a high progression of MTV of 201 ml ( P = 0.583) and poor DSS of 49.7 months ( P = 0.077). Lower numbers of affected organs indicated significantly higher DSS (hazard ratio, 1.346; P = 0.006). Osseous metastases represented a negative predictive factor for response to immunotherapy and survival. Cerebral metastases, especially when nonresponsive to immunotherapy, predicted poor survival and high increase of MTV. A high number of affected organ systems was identified as a negative factor for response and survival. Patients with only lymph node metastases showed a better response and survival.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Positron Emission Tomography Computed Tomography/methods , Melanoma/diagnostic imaging , Melanoma/drug therapy , Tumor Burden , Fluorodeoxyglucose F18/therapeutic use , Lymphatic Metastasis , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/drug therapy , Positron-Emission Tomography/methods , Immunotherapy , Prognosis , Radiopharmaceuticals/therapeutic use , Retrospective Studies
11.
J Nucl Cardiol ; 30(2): 528-539, 2023 04.
Article in English | MEDLINE | ID: mdl-35799039

ABSTRACT

BACKGROUND: Cadmium-zinc-telluride (CZT)-based detectors exhibit higher diagnostic sensitivity in myocardial perfusion imaging (MPI) than conventional Anger-MPI for detection of coronary artery disease (CAD); however, reduced specificity and diagnostic accuracy of CZT-MPI were observed. This study aims to compare these different camera systems and to examine the degree of inter-rater reproducibility among readers with varying experience in MPI. METHODS: 83 patients who underwent double stress/rest examinations using both a CZT and conventional SPECT cameras within one visit were included. Anonymized and randomized MPI-images were distributed to 15 international readers using a standardized questionnaire. Subsequent coronary angiography findings of ten patients served as a reference for analysis of sensitivity and specificity. RESULTS: Image quality was significantly better in CZT-MPI with significantly lower breast attenuation (P < 0.05). CZT-MPI exhibited higher sensitivity than Anger-MPI (87.5% vs. 62.5%) and significantly reduced specificity (40% vs. 100%). Readers experienced with both camera systems had the highest inter-rater agreement indicating higher reproducibility (CZT 0.54 vs. conv. 0.49, P < 0.05). CONCLUSIONS: Higher diagnostic sensitivity of CZT-MPI offers advantages in detection of CAD yet potentially of at the cost of reduced specificity, therefore it requires special training and a differentiated evaluation approach, especially for non-experienced readers with such camera systems.


Subject(s)
Myocardial Perfusion Imaging , Tomography, Emission-Computed, Single-Photon , Reproducibility of Results , Myocardial Perfusion Imaging/methods , Coronary Artery Disease/diagnostic imaging , Humans , Retrospective Studies , Male , Female , Middle Aged , Aged
12.
J Nucl Cardiol ; 30(3): 1050-1060, 2023 06.
Article in English | MEDLINE | ID: mdl-36180767

ABSTRACT

BACKGROUND: This work investigated the impact of different cardiac gating methods on the assessment of cardiac function by FDG-PET in a cross-validation PET/MR study. METHODS AND RESULTS: MR- and PET-based left ventricular end-diastolic, end-systolic volumes, and ejection fraction (EDV, ESV, and EF) were delineated in 30 patients with a PET/MR examination. Cardiac PET imaging was performed using three ECG gating methods: fixed number of gates per beat (STD), STD with a beat acceptance window (STD-BR), and fixed gate duration (FW). High MR-PET correlations were found in all the values. ESVs correlated better than EDVs and EFs: Pearson's r coefficient [0.92, 0.92, 0.92] in ESV vs [0.75, 0.81, 0.80] in EDV and [0.79, 0.91, 0.87] in EF, for each method [STD, STD-BR, FW]. Biases with respect to MRI for all the evaluated PET methods were less than 13% in EDV, 5% in ESV, and 14% in EF, but with wide limits of agreements, in the range (59-68)% in EDV, (65-70)% in ESV, and (49-71)% in EF. STD showed the strongest disagreement, while there were no marked differences between STD-BR and FW. CONCLUSION: Based on these findings, PET- and MR-based cardiac function parameters were highly correlated but in substantial disagreement with variabilities introduced by the selected PET ECG gating method. The most significant differences were associated with the ECG gating method susceptible to highly irregular beats, while similar performance was observed in the methods using uniform adjustment of gates width per beat with the beat acceptance window, and fixed gate width along all the beats. Thus, strict quality controls of R peak detection are needed to minimize its impact on the function assessment.


Subject(s)
Positron-Emission Tomography , Humans , Electrocardiography/methods , Magnetic Resonance Imaging , Positron-Emission Tomography/methods , Reproducibility of Results , Stroke Volume , Ventricular Function, Left
13.
Z Med Phys ; 33(1): 103-113, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36167600

ABSTRACT

We present guidelines by the European Association of Nuclear Medicine (EANM) for routine quality control (QC) of PET-CT and PET-MR systems. These guidelines are partially based on the current EANM guidelines for routine quality control of Nuclear Medicine instrumentation but focus more on the inherent multimodal aspect of the current, state-of-the-art PET-CT and PET-MR scanners. We briefly discuss the regulatory context put forward by the International Electrotechnical Commission (IEC) and European Commission (EC) and consider relevant guidelines and recommendations by other societies and professional organizations. As such, a comprehensive overview of recommended quality control procedures is provided to ensure the optimal operational status of a PET system, integrated with either a CT or MR system. In doing so, we also discuss the rationale of the different tests, advice on the frequency of each test and present the relevant MR and CT tests for an integrated system. In addition, we recommend a scheme of preventive actions to avoid QC tests from drifting out of the predefined range of acceptable performance values such that an optimal performance of the PET system is maintained for routine clinical use.


Subject(s)
Nuclear Medicine , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , Quality Control , Phantoms, Imaging
14.
Eur J Nucl Med Mol Imaging ; 50(1): 218-227, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35984452

ABSTRACT

PURPOSE: This study aims to evaluate the association of the maximum standardized uptake value (SUVmax) in positron-emission tomography targeting prostate-specific membrane antigen (PSMA-PET) prior to salvage radiotherapy (sRT) on biochemical recurrence free survival (BRFS) in a large multicenter cohort. METHODS: Patients who underwent 68 Ga-PSMA11-PET prior to sRT were enrolled in four high-volume centers in this retrospective multicenter study. Only patients with PET-positive local recurrence (LR) and/or nodal recurrence (NR) within the pelvis were included. Patients were treated with intensity-modulated-sRT to the prostatic fossa and elective lymphatics in case of nodal disease. Dose escalation was delivered to PET-positive LR and NR. Androgen deprivation therapy was administered at the discretion of the treating physician. LR and NR were manually delineated and SUVmax was extracted for LR and NR. Cox-regression was performed to analyze the impact of clinical parameters and the SUVmax-derived values on BRFS. RESULTS: Two hundred thirty-five patients with a median follow-up (FU) of 24 months were included in the final cohort. Two-year and 4-year BRFS for all patients were 68% and 56%. The presence of LR was associated with favorable BRFS (p = 0.016). Presence of NR was associated with unfavorable BRFS (p = 0.007). While there was a trend for SUVmax values ≥ median (p = 0.071), SUVmax values ≥ 75% quartile in LR were significantly associated with unfavorable BRFS (p = 0.022, HR: 2.1, 95%CI 1.1-4.6). SUVmax value in NR was not significantly associated with BRFS. SUVmax in LR stayed significant in multivariate analysis (p = 0.030). Sensitivity analysis with patients for who had a FU of > 12 months (n = 197) confirmed these results. CONCLUSION: The non-invasive biomarker SUVmax can prognosticate outcome in patients undergoing sRT and recurrence confined to the prostatic fossa in PSMA-PET. Its addition might contribute to improve risk stratification of patients with recurrent PCa and to guide personalized treatment decisions in terms of treatment intensification or de-intensification. This article is part of the Topical Collection on Oncology-Genitourinary.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/surgery , Prostate , Androgen Antagonists , Positron Emission Tomography Computed Tomography/methods , Neoplasm Recurrence, Local/diagnostic imaging , Tomography, X-Ray Computed , Prostatectomy , Retrospective Studies , Positron-Emission Tomography , Gallium Radioisotopes
16.
Comput Methods Programs Biomed ; 217: 106668, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35176596

ABSTRACT

BACKGROUND AND OBJECTIVE: The Spline Reconstruction Technique (SRT) is a fast algorithm based on a novel numerical implementation of an analytic representation of the inverse Radon transform. The purpose of this study is to provide a comparison between SRT, Filtered Back-Projection (FBP), Ordered Subset Expectation Maximization 2D (2D-OSEM), and the Tera-Tomo 3D algorithm, using phantom data at various acquisition durations as well as small-animal data obtained from the Mediso nanoScan® PET/CT scanner. METHODS: For this purpose, the "NEMA NU 4-2008 standards" protocol was employed at five different realizations and acquisition durations. In addition to the image quality metrics described by the NEMA protocol, Cold Region Contrast was also considered as a figure-of-merit. Furthermore, Cold Region Contrast was measured in the myocardial infarction region of six male Wistar rats. The volumetric defect quantification was assessed with dedicated computer software. Lastly, plots of Recovery Coefficient and Spill-Over Ratio as a function of the Percentage Standard Deviation were generated, after smoothing the phantom reconstructions with four different Gaussian filters. Statistical significance was determined by employing the Kruskal-Wallis test or One-way Analysis of Variance depending on the normality of the variable's distribution. RESULTS: The present study revealed that, at the expense of slightly increased noise in the reconstructed images, SRT resulted in higher Recovery Coefficient values for small hot regions of interest, when compared with FBP and 2D-OSEM at all acquisition durations. Furthermore, SRT reconstructed images exhibit higher Recovery Coefficient values, for all hot regions of interest, when compared to the other 2D algorithms at short acquisition durations. In both phantom and animal studies, SRT achieved a significant improvement over 2D-OSEM for the Spill-Over Ratio and the Cold Region Contrast. These advantages were maintained even after comparing the algorithms at equal noise levels. The Tera-Tomo 3D algorithm (4 subsets, iterations≥ 13) performed significantly better compared to the other algorithms for all figures-of-merit. No statistically significant differences regarding the myocardial defect size were observed between the algorithms investigated. CONCLUSIONS: Overall, SRT appears that could be useful for the quantification of small hot regions of interest, cold regions of interest, as well as in low-count imaging applications.


Subject(s)
Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Algorithms , Animals , Image Processing, Computer-Assisted/methods , Male , Phantoms, Imaging , Positron-Emission Tomography/methods , Rats , Rats, Wistar
17.
Semin Nucl Med ; 52(3): 340-355, 2022 05.
Article in English | MEDLINE | ID: mdl-34969520

ABSTRACT

When this article was written, it coincided with the 11th anniversary of the installation of our PET/MR device in Munich. In fact, this was the first fully integrated device to be in clinical use. During this time, we have observed many interesting behaviors, to put it kindly. However, it is more critical that in this process, our understanding of the system also improved - including the advantages and limitations from a technical, logistical, and medical perspective. The last decade of PET/MRI research has certainly been characterized by most sites looking for a "key application." There were many ideas in this context and before and after the devices became available, some of which were based on the earlier work with integrating data from single devices. These involved validating classical PET methods with MRI (eg, perfusion or oncology diagnostics). More important, however, were the scenarios where intermodal synergies could be expected. In this review, we look back on this decade-long journey, at the challenges overcome and those still to come.


Subject(s)
Magnetic Resonance Imaging , Positron-Emission Tomography , Humans
18.
J Nucl Cardiol ; 29(4): 2038-2041, 2022 08.
Article in English | MEDLINE | ID: mdl-33175303

ABSTRACT

Here, we present a case with a pacemaker due to an atrioventricular (AV) block 2 Mobitz type, in whom a gating failure resulted in a relevant underestimation of cardiac function in myocardial perfusion scintigraphy. A set of quality control steps for gating errors is proposed.


Subject(s)
Atrioventricular Block , Pacemaker, Artificial , Humans , Perfusion Imaging , Tomography, X-Ray Computed
19.
J Nucl Cardiol ; 29(5): 2254-2261, 2022 Oct.
Article in English | MEDLINE | ID: mdl-33860458

ABSTRACT

Our previous study has demonstrated the feasibility of noninvasive imaging of fibroblast activation protein (FAP)-expression after myocardial infarction (MI) in MI-territory in a rat model with 68Ga-FAPI-04-PET. In the current extended clinical case, we sought to delineate cardiac uptake of 68Ga-FAPI-04 in a patient after MI with clinical indication for the evidence of fibroblast activation. Carcinoma patients without cardiac disease underwent 68Ga-FAPI-04-PET/CT as control. The patient with one-vessel disease underwent dynamic 68Ga-FAPI-04-cardiac-PET/CMR for 60 minutes. Correlation of cardiac 68Ga-FAPI-04 uptake with clinical findings, ECG, echocardiography, coronary-arteriography and enhanced cardiac-MRI with T1 MOLLI and ECV mapping were performed. No uptake was found in normal myocardium and in mature scar. A focal intense 68Ga-FAPI-04 uptake with continuous wash-out in the infarct territory of coronary occlusion correlating with T1 and ECV mapping was observed. The uptake of 68Ga-FAPI-04 extends beyond the actual infarcted area and overestimates the infarct size as confirmed by follow-up CMR.


Subject(s)
Gallium Radioisotopes , Myocardial Infarction , Animals , Fibroblasts/metabolism , Fibroblasts/pathology , Membrane Proteins/metabolism , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Positron Emission Tomography Computed Tomography , Quinolines , Rats
20.
Eur J Nucl Med Mol Imaging ; 49(2): 517-526, 2022 01.
Article in English | MEDLINE | ID: mdl-34232350

ABSTRACT

PURPOSE: In PSMA-ligand PET/CT imaging, standardized evaluation frameworks and image-derived parameters are increasingly used to support prostate cancer staging. Clinical applicability remains challenging wherever manual measurements of numerous suspected lesions are required. Deep learning methods are promising for automated image analysis, typically requiring extensive expert-annotated image datasets to reach sufficient accuracy. We developed a deep learning method to support image-based staging, investigating the use of training information from two radiotracers. METHODS: In 173 subjects imaged with 68Ga-PSMA-11 PET/CT, divided into development (121) and test (52) sets, we trained and evaluated a convolutional neural network to both classify sites of elevated tracer uptake as nonsuspicious or suspicious for cancer and assign them an anatomical location. We evaluated training strategies to leverage information from a larger dataset of 18F-FDG PET/CT images and expert annotations, including transfer learning and combined training encoding the tracer type as input to the network. We assessed the agreement between the N and M stage assigned based on the network annotations and expert annotations, according to the PROMISE miTNM framework. RESULTS: In the development set, including 18F-FDG training data improved classification performance in four-fold cross validation. In the test set, compared to expert assessment, training with 18F-FDG data and the development set yielded 80.4% average precision [confidence interval (CI): 71.1-87.8] for identification of suspicious uptake sites, 77% (CI: 70.0-83.4) accuracy for anatomical location classification of suspicious findings, 81% agreement for identification of regional lymph node involvement, and 77% agreement for identification of metastatic stage. CONCLUSION: The evaluated algorithm showed good agreement with expert assessment for identification and anatomical location classification of suspicious uptake sites in whole-body 68Ga-PSMA-11 PET/CT. With restricted PSMA-ligand data available, the use of training examples from a different radiotracer improved performance. The investigated methods are promising for enabling efficient assessment of cancer stage and tumor burden.


Subject(s)
Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Edetic Acid , Gallium Isotopes , Gallium Radioisotopes , Humans , Male , Positron Emission Tomography Computed Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...