Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732194

ABSTRACT

An imbalance between production and excretion of amyloid ß peptide (Aß) in the brain tissues of Alzheimer's disease (AD) patients leads to Aß accumulation and the formation of noxious Aß oligomers/plaques. A promising approach to AD prevention is the reduction of free Aß levels by directed enhancement of Aß binding to its natural depot, human serum albumin (HSA). We previously demonstrated the ability of specific low-molecular-weight ligands (LMWLs) in HSA to improve its affinity for Aß. Here we develop this approach through a bioinformatic search for the clinically approved AD-related LMWLs in HSA, followed by classification of the candidates according to the predicted location of their binding sites on the HSA surface, ranking of the candidates, and selective experimental validation of their impact on HSA affinity for Aß. The top 100 candidate LMWLs were classified into five clusters. The specific representatives of the different clusters exhibit dramatically different behavior, with 3- to 13-fold changes in equilibrium dissociation constants for the HSA-Aß40 interaction: prednisone favors HSA-Aß interaction, mefenamic acid shows the opposite effect, and levothyroxine exhibits bidirectional effects. Overall, the LMWLs in HSA chosen here provide a basis for drug repurposing for AD prevention, and for the search of medications promoting AD progression.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Protein Binding , Serum Albumin, Human , Humans , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Ligands , Serum Albumin, Human/metabolism , Serum Albumin, Human/chemistry , Alzheimer Disease/metabolism , Molecular Weight , Binding Sites , Peptide Fragments/metabolism , Peptide Fragments/chemistry
2.
Antibiotics (Basel) ; 12(3)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36978338

ABSTRACT

LF3872 was isolated from the milk of a healthy lactating and breastfeeding woman. Earlier, the genome of LF3872 was sequenced, and a gene encoding unique bacteriocin was discovered. We have shown here that the LF3872 strain produces a novel thermolabile class III bacteriolysin (BLF3872), exhibiting antimicrobial activity against antibiotic-resistant Staphylococcus aureus strains. Sequence analysis revealed the two-domain structural (lysozyme-like domain and peptidase M23 domain) organization of BLF3872. At least 25% residues of this protein are expected to be intrinsically disordered. Furthermore, BLF3872 is predicted to have a very high liquid-liquid phase separation. According to the electron microscopy data, the bacterial cells of LF3872 strain form co-aggregates with the S. aureus 8325-4 bacterial cells. LF3872 produced bacteriolysin BLF3872 that lyses the cells of the S. aureus 8325-4 mastitis-inducing strain. The sensitivity of the antibiotic-resistant S. aureus collection strains and freshly isolated antibiotic-resistant strains was tested using samples from women with lactation mastitis; the human nasopharynx and oral cavity; the oropharynx of pigs; and the cows with a diagnosis of clinical mastitis sensitive to the lytic action of the LF3872 strain producing BLF3872. The co-cultivation of LF3872 strain with various antibiotic-resistant S. aureus strains for 24 h reduced the level of living cells of these pathogens by six log. The LF3872 strain was found to be able to co-aggregate with all studied S. aureus strains. The cell-free culture supernatant of LF3872 (CSLF3872) induced S. aureus cell damage and ATP leakage. The effectiveness of the bacteriolytic action of LF3872 strain did not depend on the origin of the S. aureus strains. The results reported here are important for the creation of new effective drugs against antibiotic-resistant strains of S. aureus circulating in humans and animals.

3.
Biomolecules ; 13(1)2023 01 03.
Article in English | MEDLINE | ID: mdl-36671483

ABSTRACT

Vascular endothelial growth factor-A (VEGF-A), a secreted homodimeric glycoprotein, is a critical regulator of angiogenesis in normal and pathological states. The binding of heparin (HE) to VEGF165 (the major form of VEGF-A) modulates the angiogenesis-related cascade, but the mechanism of the observed changes at the structural level is still insufficiently explored. In the present study, we examined the effect of HE on the structural and physicochemical properties of recombinant human VEGF165 (rhVEGF165). The HE binding results in an increase of hydrophobic surface exposure in rhVEGF165 without changes in its secondary structure. Differential scanning calorimetry measurements for intact and HE-bound rhVEGF165 reveals the absence of any pronounced thermally induced transitions in the protein in the temperature range from 20 to 100 °C. The apolar area increase during the heparin binding explains the pronounced HE-induced oligomerization/aggregation of rhVEGF165, as studied by chemical glutaraldehyde cross-linking and dynamic light scattering. Molecular modeling and docking techniques were used to model the full structure of dimeric VEGF165 and to reveal putative molecular mechanisms underlying the function of the VEGF165/HE system. In general, the results obtained can be a basis for explaining the modulating effect of HE on the biological activity of VEGF-A.


Subject(s)
Receptors, Vascular Endothelial Growth Factor , Vascular Endothelial Growth Factor A , Humans , Heparin/chemistry , Vascular Endothelial Growth Factors
4.
Biomolecules ; 12(11)2022 11 16.
Article in English | MEDLINE | ID: mdl-36421712

ABSTRACT

Caveolin-1 is a cholesterol-binding scaffold protein, which is localized in detergent-resistant membrane (DRM) rafts and interacts with components of signal transduction systems, including visual cascade. Among these components are neuronal calcium sensors (NCSs), some of which are redox-sensitive proteins that respond to calcium signals by modulating the activity of multiple intracellular targets. Here, we report that the formation of the caveolin-1 complex with recoverin, a photoreceptor NCS serving as the membrane-binding regulator of rhodopsin kinase (GRK1), is a redox-dependent process. Biochemical and biophysical in vitro experiments revealed a two-fold decreased affinity of recoverin to caveolin-1 mutant Y14E mimicking its oxidative stress-induced phosphorylation of the scaffold protein. At the same time, wild-type caveolin-1 demonstrated a 5-10-fold increased affinity to disulfide dimer of recoverin (dRec) or its thiol oxidation mimicking the C39D mutant. The formation of dRec in vitro was not affected by caveolin-1 but was significantly potentiated by zinc, the well-known mediator of redox homeostasis. In the MDCK cell model, oxidative stress indeed triggered Y14 phosphorylation of caveolin-1 and disulfide dimerization of recoverin. Notably, oxidative conditions promoted the accumulation of phosphorylated caveolin-1 in the plasma membrane and the recruitment of recoverin to the same sites. Co-localization of these proteins was preserved upon depletion of intracellular calcium, i.e., under conditions reducing membrane affinity of recoverin but favoring its interaction with caveolin-1. Taken together, these data suggest redox regulation of the signaling complex between recoverin and caveolin-1. During oxidative stress, the high-affinity interaction of thiol-oxidized recoverin with caveolin-1/DRMs may disturb the light-induced translocation of the former within photoreceptors and affect rhodopsin desensitization.


Subject(s)
Calcium , Caveolin 1 , Recoverin/metabolism , Calcium/metabolism , Caveolin 1/genetics , Caveolin 1/metabolism , Oxidation-Reduction , Disulfides/metabolism , Vision, Ocular , Sulfhydryl Compounds
5.
Int J Mol Sci ; 23(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35682848

ABSTRACT

The deposition of amyloid-ß peptide (Aß) in the brain is a critical event in the progression of Alzheimer's disease (AD). This Aß deposition could be prevented by directed enhancement of Aß binding to its natural depot, human serum albumin (HSA). Previously, we revealed that specific endogenous ligands of HSA improve its affinity to monomeric Aß. We show here that an exogenous HSA ligand, ibuprofen (IBU), exerts the analogous effect. Plasmon resonance spectroscopy data evidence that a therapeutic IBU level increases HSA affinity to monomeric Aß40/Aß42 by a factor of 3-5. Using thioflavin T fluorescence assay and transmission electron microcopy, we show that IBU favors the suppression of Aß40 fibrillation by HSA. Molecular docking data indicate partial overlap between the IBU/Aß40-binding sites of HSA. The revealed enhancement of the HSA-Aß interaction by IBU and the strengthened inhibition of Aß fibrillation by HSA in the presence of IBU could contribute to the neuroprotective effects of the latter, previously observed in mouse and human studies of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Ibuprofen/pharmacology , Ibuprofen/therapeutic use , Ligands , Mice , Molecular Docking Simulation , Peptide Fragments/metabolism , Serum Albumin/metabolism , Serum Albumin, Human
6.
Int J Mol Sci ; 22(11)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072751

ABSTRACT

Prevention of amyloid ß peptide (Aß) deposition via facilitation of Aß binding to its natural depot, human serum albumin (HSA), is a promising approach to preclude Alzheimer's disease (AD) onset and progression. Previously, we demonstrated the ability of natural HSA ligands, fatty acids, to improve the affinity of this protein to monomeric Aß by a factor of 3 (BBRC, 510(2), 248-253). Using plasmon resonance spectroscopy, we show here that another HSA ligand related to AD pathogenesis, serotonin (SRO), increases the affinity of the Aß monomer to HSA by a factor of 7/17 for Aß40/Aß42, respectively. Meanwhile, the structurally homologous SRO precursor, tryptophan (TRP), does not affect HSA's affinity to monomeric Aß, despite slowdown of the association and dissociation processes. Crosslinking with glutaraldehyde and dynamic light scattering experiments reveal that, compared with the TRP-induced effects, SRO binding causes more marked changes in the quaternary structure of HSA. Furthermore, molecular docking reveals distinct structural differences between SRO/TRP complexes with HSA. The disintegration of the serotonergic system during AD pathogenesis may contribute to Aß release from HSA in the central nervous system due to impairment of the SRO-mediated Aß trapping by HSA.


Subject(s)
Amyloid beta-Peptides/metabolism , Serotonin/metabolism , Serum Albumin, Human/metabolism , Alzheimer Disease , Amyloid beta-Peptides/chemistry , Binding Sites , Humans , Ligands , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Multimerization , Serotonin/chemistry , Serum Albumin, Human/chemistry , Structure-Activity Relationship , Temperature
7.
Biomolecules ; 10(2)2020 01 21.
Article in English | MEDLINE | ID: mdl-31973069

ABSTRACT

Neuronal calcium sensors are a family of N-terminally myristoylated membrane-binding proteins possessing a different intracellular localization and thereby targeting unique signaling partner(s). Apart from the myristoyl group, the membrane attachment of these proteins may be modulated by their N-terminal positively charged residues responsible for specific recognition of the membrane components. Here, we examined the interaction of neuronal calcium sensor-1 (NCS-1) with natural membranes of different lipid composition as well as individual phospholipids in form of multilamellar liposomes or immobilized monolayers and characterized the role of myristoyl group and N-terminal lysine residues in membrane binding and phospholipid preference of the protein. NCS-1 binds to photoreceptor and hippocampal membranes in a Ca2+-independent manner and the binding is attenuated in the absence of myristoyl group. Meanwhile, the interaction with photoreceptor membranes is less dependent on myristoylation and more sensitive to replacement of K3, K7, and/or K9 of NCS-1 by glutamic acid, reflecting affinity of the protein to negatively charged phospholipids. Consistently, among the major phospholipids, NCS-1 preferentially interacts with phosphatidylserine and phosphatidylinositol with micromolar affinity and the interaction with the former is inhibited upon mutating of N-terminal lysines of the protein. Remarkably, NCS-1 demonstrates pronounced specific binding to phosphoinositides with high preference for phosphatidylinositol-3-phosphate. The binding does not depend on myristoylation and, unexpectedly, is not sensitive to the charge inversion mutations. Instead, phosphatidylinositol-3-phosphate can be recognized by a specific site located in the N-terminal region of the protein. These data provide important novel insights into the general mechanism of membrane binding of NCS-1 and its targeting to specific phospholipids ensuring involvement of the protein in phosphoinositide-regulated signaling pathways.


Subject(s)
Neuronal Calcium-Sensor Proteins/metabolism , Neurons/metabolism , Neuropeptides/metabolism , Phosphatidylinositol Phosphates/chemistry , Binding Sites , Calcium/chemistry , Hippocampus/metabolism , Humans , Hydrogen Bonding , Ligands , Light , Liposomes/chemistry , Lysine/chemistry , Magnesium/chemistry , Molecular Docking Simulation , Mutation , Myristic Acid/chemistry , Protein Binding , Protein Domains , Signal Transduction , Spectrometry, Fluorescence , Static Electricity , Temperature
8.
Molecules ; 24(13)2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31288444

ABSTRACT

Recently, we have found that calcium binding proteins of the EF-hand superfamily (i.e., a large family of proteins containing helix-loop-helix calcium binding motif or EF-hand) contain two types of conserved clusters called cluster I ('black' cluster) and cluster II ('grey' cluster), which provide a supporting scaffold for the Ca2+ binding loops and contribute to the hydrophobic core of the EF-hand domains. Cluster I is more conservative and mostly incorporates aromatic amino acids, whereas cluster II includes a mix of aromatic, hydrophobic, and polar amino acids of different sizes. Recoverin is EF-hand Ca2+-binding protein containing two 'black' clusters comprised of F35, F83, Y86 (N-terminal domain) and F106, E169, F172 (C-terminal domain) as well as two 'gray' clusters comprised of F70, Q46, F49 (N-terminal domain) and W156, K119, V122 (C-terminal domain). To understand a role of these residues in structure and function of human recoverin, we sequentially substituted them for alanine and studied the resulting mutants by a set of biophysical methods. Under metal-free conditions, the 'black' clusters mutants (except for F35A and E169A) were characterized by an increase in the α-helical content, whereas the 'gray' cluster mutants (except for K119A) exhibited the opposite behavior. By contrast, in Ca2+-loaded mutants the α-helical content was always elevated. In the absence of calcium, the substitutions only slightly affected multimerization of recoverin regardless of their localization (except for K119A). Meanwhile, in the presence of calcium mutations in N-terminal domain of the protein significantly suppressed this process, indicating that surface properties of Ca2+-bound recoverin are highly affected by N-terminal cluster residues. The substitutions in C-terminal clusters generally reduced thermal stability of recoverin with F172A ('black' cluster) as well as W156A and K119A ('gray' cluster) being the most efficacious in this respect. In contrast, the mutations in the N-terminal clusters caused less pronounced differently directed changes in thermal stability of the protein. The substitutions of F172, W156, and K119 in C-terminal domain of recoverin together with substitution of Q46 in its N-terminal domain provoked significant but diverse changes in free energy associated with Ca2+ binding to the protein: the mutant K119A demonstrated significantly improved calcium binding, whereas F172A and W156A showed decrease in the calcium affinity and Q46A exhibited no ion coordination in one of the Ca2+-binding sites. The most of the N-terminal clusters mutations suppressed membrane binding of recoverin and its inhibitory activity towards rhodopsin kinase (GRK1). Surprisingly, the mutant W156A aberrantly activated rhodopsin phosphorylation regardless of the presence of calcium. Taken together, these data confirm the scaffolding function of several cluster-forming residues and point to their critical role in supporting physiological activity of recoverin.


Subject(s)
Recoverin/chemistry , Recoverin/metabolism , Alanine/chemistry , Amino Acid Motifs , Amino Acid Substitution , Calcium/metabolism , G-Protein-Coupled Receptor Kinase 1/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Kinetics , Models, Molecular , Mutation , Phosphorylation , Protein Binding , Recoverin/genetics , Rhodopsin/metabolism
9.
Int J Biol Macromol ; 131: 505-509, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30880051

ABSTRACT

Human serum albumin (HSA) serves as a depot and carrier of multiple unrelated ligands including several participants of the pathogenesis of Alzheimer's disease (AD), such as amyloid ß peptide (Aß), Zn2+/Cu2+ ions, docosahexaenoic (DHA), linoleic (LA), and oleic (OA) acids. To explore the interplay between HSA interaction with Zn2+/Cu2+ and the plasma unsaturated fatty acids (DHA, LA, OA, and arachidonic acid (ArA)), we have studied the metal dependence of the fatty acid (FA) binding capacity of HSA (nmax) and structural consequences of the HSA-FA interactions. HSA loading with Zn2+ decreases nmax value by 0.3-1.5, while its saturation with Cu2+ causes the FA-dependent nmax changes by up to 0.9. The Cu2+-induced decline in nmax value for DHA is due to conformational rearrangements in HSA molecule. In other cases, the changes in nmax are attributed to steric hindarance/facilitation of the HSA-FA interaction because of the protein multimerization/monomerization, as confirmed by chemical crosslinking. The surface hydrophobicity of HSA is Cu2+-, Zn2+-, and FA-dependent and decreases upon the FA binding, according to bis-ANS fluorescence data. Overall, Zn2+ or Cu2+ binding selectively affect HSA interaction with the FAs studied, in part due to changes in quaternary structure of the protein.


Subject(s)
Copper/chemistry , Fatty Acids, Unsaturated/chemistry , Ions/chemistry , Serum Albumin, Human/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Protein Binding , Zinc/chemistry
10.
Cell Calcium ; 73: 55-69, 2018 07.
Article in English | MEDLINE | ID: mdl-29684785

ABSTRACT

Rod cell membranes contain cholesterol-rich detergent-resistant membrane (DRM) rafts, which accumulate visual cascade proteins as well as proteins involved in regulation of phototransduction such as rhodopsin kinase and guanylate cyclases. Caveolin-1 is the major integral component of DRMs, possessing scaffolding and regulatory activities towards various signaling proteins. In this study, photoreceptor Ca2+-binding proteins recoverin, NCS1, GCAP1, and GCAP2, belonging to neuronal calcium sensor (NCS) family, were recognized as novel caveolin-1 interacting partners. All four NCS proteins co-fractionate with caveolin-1 in DRMs, isolated from illuminated bovine rod outer segments. According to pull-down assay, surface plasmon resonance spectroscopy and isothermal titration calorimetry data, they are capable of high-affinity binding to either N-terminal fragment of caveolin-1 (1-101), or its short scaffolding domain (81-101) via a novel structural site. In recoverin this site is localized in C-terminal domain in proximity to the third EF-hand motif and composed of aromatic amino acids conserved among NCS proteins. Remarkably, the binding of NCS proteins to caveolin-1 occurs only in the absence of calcium, which is in agreement with higher accessibility of the caveolin-1 binding site in their Ca2+-free forms. Consistently, the presence of caveolin-1 produces no effect on regulatory activity of Ca2+-saturated recoverin or NCS1 towards rhodopsin kinase, but upregulates GCAP2, which potentiates guanylate cyclase activity being in Ca2+-free conformation. In addition, the interaction with caveolin-1 decreases cooperativity and augments affinity of Ca2 + binding to recoverin apparently by facilitating exposure of its myristoyl group. We suggest that at low calcium NCS proteins are compartmentalized in photoreceptor rafts via binding to caveolin-1, which may enhance their activity or ensure their faster responses on Ca2+-signals thereby maintaining efficient phototransduction recovery and light adaptation.


Subject(s)
Caveolin 1/metabolism , Detergents/pharmacology , Membrane Microdomains/metabolism , Neuronal Calcium-Sensor Proteins/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Amino Acid Sequence , Animals , Calcium/metabolism , Calcium/pharmacology , Cattle , Caveolin 1/genetics , Detergents/metabolism , Membrane Microdomains/drug effects , Neuronal Calcium-Sensor Proteins/genetics , Photoreceptor Cells, Vertebrate/drug effects , Protein Binding/physiology , Protein Structure, Secondary , Rod Cell Outer Segment/metabolism
11.
Front Mol Neurosci ; 11: 474, 2018.
Article in English | MEDLINE | ID: mdl-30666186

ABSTRACT

The excessive light illumination of mammalian retina is known to induce oxidative stress and photoreceptor cell death linked to progression of age-related macular degeneration. The photochemical damage of photoreceptors is suggested to occur via two apoptotic pathways that involve either excessive rhodopsin activation or constitutive phototransduction, depending on the light intensity. Both pathways are dramatically activated in the absence of rhodopsin desensitization by GRK1. Previously, we have shown that moderate illumination (halogen lamp, 1,500 lx, 1-5 h) of mammalian eyes provokes disulfide dimerization of recoverin, a calcium-dependent regulator of GRK1. Here, we demonstrate under in vivo conditions that both moderate long-term (metal halide lamp, 2,500 lx, 14 h, rat model) and intense short-term (halogen lamp, 30,000 lx for 3 h, rabbit model) illumination of the mammalian retina are accompanied by accumulation of disulfide dimer of recoverin. Furthermore, in the second case we reveal alternatively oxidized derivatives of the protein, apparently including its monomer with sulfinic group. Histological data indicate that thiol oxidation of recoverin precedes apoptosis of photoreceptors. Both disulfide dimer and oxidized monomer (or oxidation mimicking C39D mutant) of recoverin exhibit lowered α-helical content and thermal stability of their apo-forms, as well as increased Ca2+ affinity. Meanwhile, the oxidized monomer and C39D mutant of recoverin demonstrate impaired ability to bind photoreceptor membranes and regulate GRK1, whereas disulfide dimer exhibits notably improved membrane binding and GRK1 inhibition in absence of Ca2+. The latter effect is expected to slow down rhodopsin desensitization in the light, thereby favoring support of the light-induced oxidative stress, ultimately leading to photoreceptor apoptosis. Overall, the intensity and duration of illumination of the retina affect thiol oxidation of recoverin likely contributing to propagation of the oxidative stress and photoreceptor damage.

12.
Biometals ; 30(3): 341-353, 2017 06.
Article in English | MEDLINE | ID: mdl-28303360

ABSTRACT

Human serum albumin (HSA) is an abundant multiligand carrier protein, linked to progression of Alzheimer's disease (AD). Blood HSA serves as a depot of amyloid ß (Aß) peptide. Aß peptide-buffering properties of HSA depend on interaction with its ligands. Some of the ligands, namely, linoleic acid (LA), zinc and copper ions are involved into AD progression. To clarify the interplay between LA and metal ion binding to HSA, the dependence of LA binding to HSA on Zn2+, Cu2+, Mg2+ and Ca2+ levels and structural consequences of these interactions have been explored. Seven LA molecules are bound per HSA molecule in the absence of the metal ions. Zn2+ binding to HSA causes a loss of one bound LA molecule, while the other metals studied exert an opposite effect (1-2 extra LA molecules are bound). In most cases, the observed effects are not related to the metal-induced changes in HSA quaternary structure. However, the Zn2+-induced decline in LA capacity of HSA could be due to accumulation of multimeric HSA forms. Opposite to Ca2+/Mg2+-binding, Zn2+ or Cu2+ association with HSA induces marked changes in its hydrophobic surface. Overall, the divalent metal ions modulate LA capacity and affinity of HSA to a different extent. LA- and Ca2+-binding to HSA synergistically support each other. Zn2+ and Cu2+ induce more pronounced changes in hydrophobic surface and quaternary structure of HSA and its LA capacity. A misbalanced metabolism of these ions in AD could modify interactions of HSA with LA, other fatty acids and hydrophobic substances, associated with AD.


Subject(s)
Cations, Divalent/pharmacology , Linoleic Acid/chemistry , Serum Albumin/chemistry , Binding Sites/drug effects , Calcium/chemistry , Cations, Divalent/chemistry , Copper/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Magnesium/chemistry , Protein Binding/drug effects , Surface Properties , Zinc/chemistry
13.
Chembiochem ; 15(18): 2693-702, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25403886

ABSTRACT

The cytotoxic complex formed between α-lactalbumin and oleic acid (OA) has inspired many studies on protein-fatty acid complexes, but structural insight remains sparse. After having used small-angle X-ray scattering (SAXS) to obtain structural information, we present a new, generic structural model of cytotoxic protein-oleic acid complexes, which we have termed liprotides (lipids and partially denatured proteins). Twelve liprotides formed from seven structurally unrelated proteins and prepared by different procedures all displayed core-shell structures, each with a micellar OA core and a shell consisting of flexible, partially unfolded protein, which stabilizes the OA micelle. The common structure explains similar effects exerted on cells by different liprotides and is consistent with a cargo off-loading of the OA into cell membranes.


Subject(s)
Cytotoxins/chemistry , Oleic Acids/chemistry , Proteins/chemistry , Animals , Cattle , Cytotoxins/pharmacology , Hemolysis/drug effects , Micelles , Oleic Acids/pharmacology , Protein Denaturation , Protein Folding , Proteins/pharmacology , Scattering, Small Angle , X-Ray Diffraction
14.
Biochemistry ; 52(36): 6286-99, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-23947814

ABSTRACT

HAMLET is a complex of human α-lactalbumin (hLA) with oleic acid (OA) that kills various tumor cells and strains of Streptococcus pneumoniae. More potent protein-OA complexes were previously reported for bovine α-lactalbumin (bLA) and ß-lactoglobulin (bLG), and pike parvalbumin (pPA), and here we explore their structural features. The concentration dependencies of the tryptophan fluorescence of hLA, bLA, and bLG complexes with OA reveal their disintegration at protein concentrations below the micromolar level. Chemical cross-linking experiments provide evidence that association with OA shifts the distribution of oligomeric forms of hLA, bLA, bLG, and pPA toward higher-order oligomers. This effect is confirmed for bLA and bLG using the dynamic light scattering method, while pPA is shown to associate with OA vesicles. Like hLA binding, OA binding increases the affinity of bLG for small unilamellar dipalmitoylphosphatidylcholine vesicles, while pPA efficiently binds to the vesicles irrespective of OA binding. The association of OA with bLG and pPA increases their α-helix and cross-ß-sheet content and resistance to enzymatic proteolysis, which is indicative of OA-induced protein structuring. The lack of excess heat sorption during melting of bLG and pPA in complex with OA and the presence of a cooperative thermal transition at the level of their secondary structure suggest that the OA-bound forms of bLG and pPA lack a fixed tertiary structure but exhibit a continuous thermal transition. Overall, despite marked differences, the HAMLET-like complexes that were studied exhibit a common feature: a tendency toward protein oligomerization. Because OA-induced oligomerization has been reported for other proteins, this phenomenon is inherent to many proteins.


Subject(s)
Lactalbumin/chemistry , Lactoglobulins/chemistry , Oleic Acids/chemistry , Parvalbumins/chemistry , 1,2-Dipalmitoylphosphatidylcholine/analogs & derivatives , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Anilino Naphthalenesulfonates/chemistry , Animals , Cattle , Esocidae , Humans , Light , Protein Conformation , Protein Denaturation , Protein Structure, Secondary/drug effects , Scattering, Radiation , Unilamellar Liposomes
SELECTION OF CITATIONS
SEARCH DETAIL