Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Life Sci Alliance ; 7(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38331475

ABSTRACT

Brachydactyly type E (BDE), shortened metacarpals, metatarsals, cone-shaped epiphyses, and short stature commonly occurs as a sole phenotype. Parathyroid hormone-like protein (PTHrP) has been shown to be responsible in all forms to date, either directly or indirectly. We used linkage and then whole genome sequencing in a small pedigree, to elucidate BDE and identified a truncated disintegrin-and-metalloproteinase-19 (ADAM19) allele in all affected family members, but not in nonaffected persons. Since we had shown earlier that the extracellular domain of the parathyroid hormone receptor (PTHR1) is subject to an unidentified metalloproteinase cleavage, we tested the hypothesis that ADAM19 is a sheddase for PTHR1. WT ADAM19 cleaved PTHR1, while mutated ADAM-19 did not. We mapped the cleavage site that we verified with mass spectrometry between amino acids 64-65. ADAM-19 cleavage increased Gq and decreased Gs activation. Moreover, perturbed PTHR1 cleavage by ADAM19 increased ß-arrestin2 recruitment, while cAMP accumulation was not altered. We suggest that ADAM19 serves as a regulatory element for PTHR1 and could be responsible for BDE. This sheddase may affect other PTHrP or PTH-related functions.


Subject(s)
Brachydactyly , Parathyroid Hormone-Related Protein , Humans , Parathyroid Hormone-Related Protein/genetics , Brachydactyly/genetics , Receptor, Parathyroid Hormone, Type 1/genetics , Receptor, Parathyroid Hormone, Type 1/metabolism , Metalloproteases , ADAM Proteins
2.
Proc Natl Acad Sci U S A ; 119(32): e2122037119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35914163

ABSTRACT

Receptor-activity-modifying proteins (RAMPs) are ubiquitously expressed membrane proteins that associate with different G protein-coupled receptors (GPCRs), including the parathyroid hormone 1 receptor (PTH1R), a class B GPCR and an important modulator of mineral ion homeostasis and bone metabolism. However, it is unknown whether and how RAMP proteins may affect PTH1R function. Using different optical biosensors to measure the activation of PTH1R and its downstream signaling, we describe here that RAMP2 acts as a specific allosteric modulator of PTH1R, shifting PTH1R to a unique preactivated state that permits faster activation in a ligand-specific manner. Moreover, RAMP2 modulates PTH1R downstream signaling in an agonist-dependent manner, most notably increasing the PTH-mediated Gi3 signaling sensitivity. Additionally, RAMP2 increases both PTH- and PTHrP-triggered ß-arrestin2 recruitment to PTH1R. Employing homology modeling, we describe the putative structural molecular basis underlying our functional findings. These data uncover a critical role of RAMPs in the activation and signaling of a GPCR that may provide a new venue for highly specific modulation of GPCR function and advanced drug design.


Subject(s)
Receptor Activity-Modifying Protein 2 , Receptor, Parathyroid Hormone, Type 1 , Signal Transduction , Biosensing Techniques , Ligands , Parathyroid Hormone/metabolism , Receptor Activity-Modifying Protein 2/genetics , Receptor Activity-Modifying Protein 2/metabolism , Receptor, Parathyroid Hormone, Type 1/genetics , Receptor, Parathyroid Hormone, Type 1/metabolism , Receptors, G-Protein-Coupled/metabolism , beta-Arrestin 2/metabolism
3.
Cell ; 185(7): 1130-1142.e11, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35294858

ABSTRACT

G protein-coupled receptors (GPCRs) relay extracellular stimuli into specific cellular functions. Cells express many different GPCRs, but all these GPCRs signal to only a few second messengers such as cAMP. It is largely unknown how cells distinguish between signals triggered by different GPCRs to orchestrate their complex functions. Here, we demonstrate that individual GPCRs signal via receptor-associated independent cAMP nanodomains (RAINs) that constitute self-sufficient, independent cell signaling units. Low concentrations of glucagon-like peptide 1 (GLP-1) and isoproterenol exclusively generate highly localized cAMP pools around GLP-1- and ß2-adrenergic receptors, respectively, which are protected from cAMP originating from other receptors and cell compartments. Mapping local cAMP concentrations with engineered GPCR nanorulers reveals gradients over only tens of nanometers that define the size of individual RAINs. The coexistence of many such RAINs allows a single cell to operate thousands of independent cellular signals simultaneously, rather than function as a simple "on/off" switch.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Cell Physiological Phenomena , Cyclic AMP , Glucagon-Like Peptide 1 , Receptors, Adrenergic, beta-2 , Receptors, G-Protein-Coupled/chemistry , Second Messenger Systems
4.
Methods Mol Biol ; 2268: 137-147, 2021.
Article in English | MEDLINE | ID: mdl-34085266

ABSTRACT

Here we describe the stepwise application of bioluminescence resonance energy transfer (BRET)-based conformational receptor biosensors to study GPCR activation in intact cells. This technology can be easily adopted to various plate reader devices and microtiter plate formats. Due to the high sensitivity of these BRET-based receptor biosensors and their ability to quantify simultaneously receptor activation/de-activation kinetics as well as compound efficacy and potency, these optical tools provide the most direct and unbiased approach to monitor GPCR activity in a high-throughput-compatible assay format, representing a novel promising tool for the discovery of potential GPCR therapeutics.


Subject(s)
Bioluminescence Resonance Energy Transfer Techniques/methods , Drug Evaluation, Preclinical/methods , Fluorescent Dyes/chemistry , High-Throughput Screening Assays/methods , Luciferases/metabolism , Receptors, G-Protein-Coupled/metabolism , HEK293 Cells , Humans , Protein Conformation , Receptors, G-Protein-Coupled/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL