Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Nanoscale Adv ; 6(14): 3632-3643, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38989523

ABSTRACT

Turkevich syntheses represent a foundational approach for forming colloids of monodisperse gold nanoparticles where the use of these structures as building blocks when forming multicomponent nanoassemblies is pervasive. The core-satellite motif, which is characterized by a central core structure onto which satellite structures are tethered, distinguishes itself in that it can realize numerous plasmonic nanogaps with nanometer scale widths. Established procedures for assembling these multicomponent structures are, to a large extent, empirically driven, time-consuming, difficult to reproduce, and in need of a strong mechanistic underpinning relating to the close-range electrostatic interactions needed to secure satellite structures onto core materials. Described herein is a rapid, repeatable procedure for assembling core-satellite structures using Turkevich-grown satellites and dithiol linkers. With this successful procedure acting as a baseline for benchmarking modified procedures, a rather complex parameter space is understood in terms of timeline requirements for various processing steps and an analysis of the factors that prove consequential to assembly. It is shown that seemingly innocuous procedures realize sparsely populated cores whereas cores initially obstructed with commonly used capping agents lead to few disruptions to satellite attachment. Once these factors are placed under control, then it is the ionic strength imposed by the reaction biproducts of the Turkevich synthesis that is the critical factor in assembly because they decide the spatial extent of the electrical double layer surrounding each colloidal nanoparticle. With this understanding, it is possible to control the ionic strength through the addition or subtraction of various ionic species and assert control over the assembly process. The work, hence, advances the rules for a robust core-satellite assembly process and, in a broader sense, contributes to the knowhow required for the precise, programmable, and controllable assembly of multicomponent systems.

2.
ACS Nano ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984856

ABSTRACT

The Stöber method for forming spherical silica colloids is well-established as one of the pillars of colloidal synthesis. In a modified form, it has been extensively used to deposit both porous and protective shells over metal nanomaterials. Current best-practice techniques require that the vitreophobic surface of metal nanoparticles be primed with a surface ligand to promote silica deposition. Although such techniques have proved highly successful in forming core-shell configurations, the site-selective deposition of silica onto preselected areas of faceted metal nanostructures has proved far more challenging. Herein, a primer-free TEOS-based synthesis is demonstrated that is capable of forming architecturally complex nanoframes and nanocages on the pristine surfaces of faceted gold nanostructures. The devised synthesis overcomes vitreophobicity using elevated TEOS concentrations that trigger silica nucleation along the low-coordination sites where gold facets meet. Continued deposition sees the emergence of a well-connected frame followed by the lateral infilling of the openings formed over gold facets. With growth readily terminated at any point in this sequence, the synthesis distinguishes itself in being able to achieve patterned and tunable silica depositions expressing interfaces that are uncorrupted by primers. The so-formed structures are demonstrated as template materials capable of asserting high-level control over synthesis and assembly processes by using the deposited silica as a mask that deactivates selected areas against these processes while allowing them to proceed elsewhere. The work, hence, extends the capabilities and versatility of TEOS-based syntheses and provides pathways for forming multicomponent nanostructures and nanoassemblies with structurally engineered properties.

3.
Nanoscale ; 15(43): 17609-17620, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37876284

ABSTRACT

Sacrificial templates present an effective pathway for gaining high-level control over nanoscale reaction products. Atomic layer deposition (ALD) is ideally suited for such approaches due to its ability to replicate the surface topography of a template material through the deposition of an ultrathin conformal layer. Herein, metal nanostructures are demonstrated as sacrificial templates for the formation of architecturally complex and deterministically positioned oxide nanoshells, open-topped nanobowls, vertically standing half-shells, and nanorings. The three-step process sees metal nanocrystals formed in periodic arrays, coated with an ALD-deposited oxide, and hollowed out with a selective etch through nanopores formed in the oxide shell. The procedure is further augmented through the use of a directional ion beam that is used to sculpt the oxide shells into bowl- and ring-like configurations. The functionality of the so-formed materials is demonstrated through their use as substrate-confined nanoreactors able to promote the growth and confinement of nanomaterials. Taken together, the work expands the design space for substrate-based nanomaterials, creates a platform for advancing functional surfaces and devices and, from a broader perspective, advances the use of ALD in forming complex nanomaterials.

5.
ACS Nano ; 17(4): 4050-4061, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36799807

ABSTRACT

Bimetallic Janus nanostructures represent a highly functional class of nanomaterials due to important physicochemical properties stemming from the union of two chemically distinct metal segments where each maintains a partially exposed surface. Essential to their synthesis is the incorporation of a symmetry-breaking control that is able to induce the regioselective deposition of a secondary metal onto a preexisting nanostructure even though such depositions are, more often than not, in opposition to the innate tendencies of heterogeneous growth modes. Numerous symmetry-breaking controls have been forwarded but the ensuing Janus structure syntheses have not yet achieved anywhere near the same level of control over nanostructure size, shape, and composition as their core-shell and single-element counterparts. Herein, a collimated ion beam is demonstrated as a symmetry-breaking control that allows for the selective removal of a passivating oxide shell from one side of a metal nanostructure to create a configuration that is transformable into a substrate-bound Au-Ag Janus nanostructure. Two different modalities are demonstrated for achieving Janus structures where in one case the oxide dissolves in the growth solution while in the other it remains affixed to form a three-component system. The devised procedures distinguish themselves in their ability to realize complex Janus architectures arranged in periodic arrays where each structure has the same alignment relative to the underlying substrate. The work, hence, provides an avenue for forming precisely tailored Janus structures and, in a broader sense, advances the use of oxides as an effective means for directing nanometal syntheses.

6.
Small ; 18(52): e2205780, 2022 12.
Article in English | MEDLINE | ID: mdl-36344422

ABSTRACT

The advancement of nanoenabled wafer-based devices requires the establishment of core competencies related to the deterministic positioning of nanometric building blocks over large areas. Within this realm, plasmonic single-crystal gold nanotriangles represent one of the most attractive nanoscale components but where the formation of addressable arrays at scale has heretofore proven impracticable. Herein, a benchtop process is presented for the formation of large-area periodic arrays of gold nanotriangles. The devised growth pathway sees the formation of an array of defect-laden seeds using lithographic and vapor-phase assembly processes followed by their placement in a growth solution promoting planar growth and threefold symmetric side-faceting. The nanotriangles formed in this high-yield synthesis distinguish themselves in that they are epitaxially aligned with the underlying substrate, grown to thicknesses that are not readily obtainable in colloidal syntheses, and present atomically flat pristine surfaces exhibiting gold atoms with a close-packed structure. As such, they express crisp and unambiguous plasmonic modes and form photoactive surfaces with highly tunable and readily modeled plasmon resonances. The devised methods, hence, advance the integration of single-crystal gold nanotriangles into device platforms and provide an overall fabrication strategy that is adaptable to other nanomaterials.


Subject(s)
Gold , Nanostructures , Gold/chemistry , Nanostructures/chemistry
7.
ACS Appl Mater Interfaces ; 14(24): 28186-28198, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35695394

ABSTRACT

The subwavelength confinement of light energy in the nanogaps formed between adjacent plasmonic nanostructures provides the foundational basis for nanophotonic applications. Within this realm, air-filled nanogaps are of central importance because they present a cavity where application-specific nanoscale objects can reside. When forming such configurations on substrate surfaces, there is an inherent difficulty in that the most technologically relevant nanogap widths require closely spaced nanostructures separated by distances that are inaccessible through standard electron-beam lithography techniques. Herein, we demonstrate an assembly route for the fabrication of aligned plasmonic gold trimers with air-filled vertical nanogaps having widths that are defined with spatial controls that exceed those of lithographic processes. The devised procedure uses a sacrificial oxide layer to define the nanogap, a glancing angle deposition to impose a directionality on trimer formation, and a sacrificial antimony layer whose sublimation regulates the gold assembly process. By further implementing a benchtop nanoimprint lithography process and a glancing angle ion milling procedure as additional controls over the assembly, it is possible to deterministically position trimers in periodic arrays and extend the assembly process to dimer formation. The optical response of the structures, which is characterized using polarization-dependent spectroscopy, surface-enhanced Raman scattering, and refractive index sensitivity measurements, shows properties that are consistent with simulation. This work, hence, forwards the wafer-based processing techniques needed to form air-filled nanogaps and place plasmonic energy at site-specific locations.

8.
Nanoscale ; 13(47): 20225-20233, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34851336

ABSTRACT

Colloidal growth modes reliant on the replication of the crystalline character of a preexisting seed through homoepitaxial or heteroepitaxial depositions have enriched both the architectural diversity and functionality of noble metal nanostructures. Equivalent syntheses, when practiced on seeds formed on a crystalline substrate, must reconcile with the fact that the substrate enters the syntheses as a chemically distinct bulk-scale component that has the potential to impose its own epitaxial influences. Herein, we provide an understanding of the formation of epitaxial interfaces within the context of a hybrid growth mode that sees substrate-based seeds fabricated at high temperatures in the vapor phase on single-crystal oxide substrates and then exposed to a low-temperature liquid-phase synthesis yielding highly faceted nanostructures with a single-crystal character. Using two representative syntheses in which gold nanoplates and silver-platinum core-shell structures are formed, it is shown that the hybrid system behaves unconventionally in terms of epitaxy in that the substrate imposes an epitaxial relationship on the seed but remains relatively inactive as the metal seed imposes an epitaxial relationship on the growing nanostructure. With epitaxy transduced from substrate to seed to nanostructure through what is, in essence, a relay system, all of the nanostructures formed in a given synthesis end up with the same crystallographic orientation relative to the underlying substrate. This work advances the use of substrate-induced epitaxy as a synthetic control in the fabrication of on-chip devices reliant on the collective response of identically aligned nanostructures.

9.
Nano Lett ; 21(7): 2919-2925, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33764074

ABSTRACT

Symmetry-breaking synthetic controls allow for nanostructure geometries that are counter to the underlying crystal symmetry of a material. If suitably applied, such controls provide the means to drive an isotropic metal along a growth pathway yielding a three-dimensional chiral geometry. Herein, we present a light-driven solution-based synthesis yielding helical gold spirals from substrate-bound seeds. The devised growth mode relies on three separate symmetry-breaking events ushered in by seeds lined with planar defects, a capping agent that severely frustrates early stage growth, and the Coulombic repulsion that occurs when identically charged growth fronts collide. Together they combine to advance a growth pathway in which planar growth emanates from one side of the seed, advances to encircle the seed from both clockwise and counterclockwise directions, and then, upon collision of the two growth fronts, sees one front rise above the other to realize a self-perpetuating three-dimensional spiral structure.

10.
Nanoscale ; 12(31): 16489-16500, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32790810

ABSTRACT

With arms radiating from a central core, gold nanostars represent a unique and fascinating class of nanomaterials from which extraordinary plasmonic properties are derived. Despite their relevance to sensing applications, methods for fabricating homogeneous populations of nanostars on large-area planar surfaces in truly periodic arrays is lacking. Herein, the fabrication of nanostar arrays is demonstrated through the formation of hexagonal patterns of near-hemispherical gold seeds and their subsequent exposure to a liquid-state chemical environment that is conducive to colloidal nanostar formation. Three different colloidal nanostar protocols were targeted where HEPES, DMF, and ascorbic acid represent a key reagent in their respective redox chemistries. Only the DMF-driven synthesis proved readily adaptable to the substrate-based platform but nanostar-like structures emerged from the other protocols when synthetic controls such as reaction kinetics, the addition of Ag+ ions, and pH adjustments were applied. Because the nanostars were derived from near-hemispherical seeds, they acquired a unique geometry that resembles a conventional nanostar that has been truncated near its midsection. Simulations of plasmonic properties of this geometry reveal that such structures can exhibit maximum near-field intensities that are as much as seven-times greater than the standard nanostar geometry, a finding that is corroborated by surface-enhanced Raman scattering (SERS) measurements showing large enhancement factors. The study adds nanostars to the library of nanostructure geometries that are amenable to large-area periodic arrays and provides a potential pathway for the nanofabrication of SERS substrates with even greater enhancements.

11.
ACS Appl Mater Interfaces ; 12(23): 26680-26687, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32402195

ABSTRACT

Understanding the growth dynamics of the microbubbles produced by plasmonic heating can benefit a wide range of applications like microfluidics, catalysis, micropatterning, and photothermal energy conversion. Usually, surface plasmonic bubbles are generated on plasmonic structures predeposited on the surface subject to laser heating. In this work, we investigate the growth dynamics of surface microbubbles generated in plasmonic nanoparticle (NP) suspension. We observe much faster bubble growth rates compared to those in pure water with surface plasmonic structures. Our analyses show that the volumetric heating effect around the surface bubble due to the existence of NPs in the suspension is the key to explaining this difference. Such volumetric heating increases the temperature around the surface bubble more efficiently compared to surface heating which enhances the expelling of dissolved gas. We also find that the bubble growth rates can be tuned in a very wide range by changing the concentration of NPs, besides laser power and dissolved gas concentration.

12.
Nano Lett ; 19(8): 5653-5660, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31365267

ABSTRACT

The seed-mediated growth of noble metal nanostructures with planar geometries requires the use of seeds lined with parallel stacking faults so as to provide a break in symmetry in an otherwise isotropic metal. Although such seeds are now routinely synthesized using colloidal pathways, equivalent pathways have not yet been reported for the fabrication of substrate-based seeds with the same internal defect structures. The challenge is not merely to form seeds with planar defects but to do so in a deterministic manner so as to have stacking faults that only run parallel to the substrate surface while still allowing for the lithographic processes needed to regulate the placement of seeds. Here, we demonstrate substrate-imposed epitaxy as a viable synthetic control able to induce planar defects in Au seeds while simultaneously dictating nanostructure in-plane alignment and crystallographic orientation. The seeds, which are formed in periodic arrays using nanoimprint lithography in combination with a vapor-phase assembly process, are subjected to a liquid-phase plasmon-mediated synthesis that uses light as an external stimuli to drive a reaction yielding periodic arrays of hexagonal Au nanoplates. These achievements not only represent the first of their kind demonstrations but also advance the possibility of integrating wafer-based technologies with a rich and exciting nanoplate colloidal chemistry.

13.
Nanoscale ; 10(39): 18749-18757, 2018 Oct 21.
Article in English | MEDLINE | ID: mdl-30276391

ABSTRACT

Nanostructures have potential for use in biomedical applications such as sensing, imaging, therapeutics, and drug delivery. Among nanomaterials, gold nanostructures are of considerable interest for biomedical research, owing to their bio-inertness, controllable surface chemistry, X-ray opacity, and optical properties. Gold nanocages are particularly attractive for imaging and therapeutic applications, because they strongly absorb light in the near infra-red region which has high light transmission in tissue. However, the X-ray attenuation of nanocages is relatively low due to their hollow structure. In this study, for the first time, we sought to combine the attractive optical properties of nanoshells with the high payloads of solid nanoparticles and investigated their biomedical applications. Here, we report the engineering of Wulff in a cage nanoparticles via converting gold Wulff-shaped seeds into gold-silver core-shell structures and then performing a galvanic replacement reaction. The structure of these nanoparticles was determined using transition electron microscopy. This morphological transformation of gold nanoparticles shaped as truncated octahedrons into a complex Wulff in a cage nanoparticles during the reaction resulted in extensive changes in their optical properties that made these unique structures a potential contrast agent for photoacoustic imaging. We found that the Wulff in a cage nanoparticles had no adverse effects on the viabilities of J774A.1, Renca, and HepG2 cells at any of the concentrations tested. In vitro and in vivo experiments showed robust signals in both photoacoustic imaging and computed tomography. To the best of our knowledge, this is the first report of Wulff in a cage nanoparticles serving as a platform for multiple imaging modalities. This unique multifunctional nanostructure, which integrates the competencies of both core and shell structures, allows their use as contrast agents for photoacoustic imaging, computed tomography and as a potential agent for photothermal therapy.

14.
Nanoscale ; 10(38): 18186-18194, 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-30246850

ABSTRACT

Current best-practice lithographic techniques are unable to meet the functional requirements needed to enable on-chip plasmonic devices capable of fully exploiting nanostructure properties reliant on a tailored nanostructure size, composition, architecture, crystallinity, and placement. As a consequence, numerous nanofabrication methods have emerged that address various weaknesses, but none have, as of yet, demonstrated a large-area processing route capable of defining organized surfaces of nanostructures with the architectural diversity and complexity that is routinely displayed in colloidal syntheses. Here, a hybrid fabrication strategy is demonstrated in which nanoimprint lithography is combined with templated dewetting and liquid-phase syntheses that is able to realize periodic arrays of complex noble metal nanostructures over square centimeter areas. The process is inexpensive, can be carried out on a benchtop, and requires modest levels of instrumentation. Demonstrated are three fabrication schemes yielding arrays of core-shell, core-void-shell, and core-void-nanoframe structures using liquid-phase syntheses involving heteroepitaxial deposition, galvanic replacement, and dealloying. With the field of nanotechnology being increasingly reliant on the engineering of desirable physicochemical responses through architectural control, the fabrication strategy provides a platform for advancing devices reliant on addressable arrays or the collective response from an ensemble of identical nanostructures.

15.
Front Chem ; 6: 411, 2018.
Article in English | MEDLINE | ID: mdl-30250842

ABSTRACT

Micro- and nanoscale ZnO tetrapods provide an attractive support for metallic nanostructures since they can be inexpensively produced using the flame transport method and nanoparticle synthesis schemes can take advantage of a coupled response facilitated by the formation of a semiconductor-metal interface. Here, we present a light-mediated solution-based growth mode capable of decorating the surface of ZnO tetrapods with nanostructures of gold, silver, copper, platinum, palladium, ruthenium, iridium, and rhodium. It involves two coupled reactions that are driven by the optical excitation of electron-hole pairs in the ZnO semiconductor by ultraviolet photons where the excited electrons are used to reduce aqueous metal ions onto the ZnO tetrapod as excited holes are scavenged from the surface. For the most part, the growth mode gives rise to nanoparticles with a roundish morphology that are uniformly distributed on the tetrapod surface. Larger structures with irregular shapes are, however, obtained for syntheses utilizing aqueous metal nitrates as opposed to chlorides, a result that suggests that the anion plays a role in shape determination. It is also demonstrated that changes to the molarity of the metal ion can influence the nanostructure nucleation rate. The catalytic activity of tetrapods decorated with each of the eight metals is assessed using the reduction of 4-nitrophenol by borohydride as a model reaction where it is shown that those decorated with Pd, Ag, and Rh are the most active.

16.
ACS Appl Mater Interfaces ; 10(40): 34690-34698, 2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30209944

ABSTRACT

Enhancing thermal energy transport across solid interfaces is of critical importance to a wide variety of applications ranging from energy systems and lighting devices to electronics. Nanoscale surface roughness is usually considered detrimental to interfacial thermal transport because of its role in phonon scattering. In this study, however, we demonstrate significant thermal conductance enhancements across metal-semiconductor interfaces by as much as 90% higher than that of the planar interfaces using engineered nanostructures fabricated by Au nanoparticle (NP)-assisted lithography, where self-assembled Au NPs are used as an efficient etching mask to pattern solid substrates over large surface areas. The enlarged interfacial contact area due to the presence of nanostructures is the main reason for the significantly enhanced thermal transport. It is further demonstrated that the conductance can be systematically tuned over a wide range through the use of the Au NP self-assembly process that is regulated by a sacrificial Sb layer whose thickness determines the size and density of the nanostructures produced. This strategy is tested on two technologically important semiconductors, Si and GaN, and their interfacial thermal conductance with Al being measured using the time-domain thermoreflectance technique. Moreover, the nanostructured interfaces can maintain the enhanced conductance for a temperature range of 30-110 °C-the operating temperatures commonly experienced by energy, lighting, and electronic devices. Our results could provide a wafer-scale and low-cost strategy for improving the thermal management of these devices.

17.
Nanotechnology ; 28(28): 282002, 2017 Jul 14.
Article in English | MEDLINE | ID: mdl-28590253

ABSTRACT

One of the foremost challenges in nanofabrication is the establishment of a processing science that integrates wafer-based materials, techniques, and devices with the extraordinary physicochemical properties accessible when materials are reduced to nanoscale dimensions. Such a merger would allow for exacting controls on nanostructure positioning, promote cooperative phenomenon between adjacent nanostructures and/or substrate materials, and allow for electrical contact to individual or groups of nanostructures. With neither self-assembly nor top-down lithographic processes being able to adequately meet this challenge, advancements have often relied on a hybrid strategy that utilizes lithographically-defined features to direct the assembly of nanostructures into organized patterns. While these so-called directed assembly techniques have proven viable, much of this effort has focused on the assembly of periodic arrays of spherical or near-spherical nanostructures comprised of a single element. Work directed toward the fabrication of more complex nanostructures, while still at a nascent stage, has nevertheless demonstrated the possibility of forming arrays of nanocubes, nanorods, nanoprisms, nanoshells, nanocages, nanoframes, core-shell structures, Janus structures, and various alloys on the substrate surface. In this topical review, we describe the progress made in the directed assembly of periodic arrays of these complex metal nanostructures on planar and textured substrates. The review is divided into three broad strategies reliant on: (i) the deterministic positioning of colloidal structures, (ii) the reorganization of deposited metal films at elevated temperatures, and (iii) liquid-phase chemistry practiced directly on the substrate surface. These strategies collectively utilize a broad range of techniques including capillary assembly, microcontact printing, chemical surface modulation, templated dewetting, nanoimprint lithography, and dip-pen nanolithography and employ a wide scope of chemical processes including redox reactions, alloying, dealloying, phase separation, galvanic replacement, preferential etching, template-mediated reactions, and facet-selective capping agents. Taken together, they highlight the diverse toolset available when fabricating organized surfaces of substrate-supported nanostructures.

18.
Nano Lett ; 16(12): 7791-7797, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27960449

ABSTRACT

The reduction of 4-nitrophenol to 4-aminophenol by borohydride is one of the foremost model catalytic reactions because it allows for a straightforward assessment of catalysts using the kinetic parameters extracted from the real-time spectroscopic monitoring of an aqueous solution. Crucial to its standing as a model reaction is a comprehensive mechanistic framework able to explain the entire time evolution of the reaction. While much of this framework is in place, there is still much debate over the cause of the induction period, an initial time interval where no reaction seemingly occurs. Here, we report on the simultaneous monitoring of the spectroscopic signal and the dissolved oxygen content within the aqueous solution. It reveals that the induction period is the time interval required for the level of dissolved oxygen to fall below a critical value that is dependent upon whether Au, Ag, or Pd nanoparticles are used as the catalyst. With this understanding, we are able to exert complete control over the induction period, being able to eliminate it, extend it indefinitely, or even induce multiple induction periods over the course of a single reaction. Moreover, we have determined that the reaction product, 4-aminophenol, in the presence of the same catalyst reacts with dissolved oxygen to form 4-nitrophenolate. The implication of these results is that the induction period relates, not to some activation of the catalyst, but to a time interval where the reaction product is being rapidly transformed back into a reactant by a side reaction.

19.
Acc Chem Res ; 49(10): 2243-2250, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27622782

ABSTRACT

Modern technologically driven societies could not exist in their current form if it were not for a great many synthetic achievements reliant on solution-based chemistry and substrate-based processing techniques. It is, hence, not surprising that these same materials preparation techniques have given rise to an impressive list of functional nanomaterials including those derived from noble metals, a class of materials renowned for their extraordinary optical and catalytic properties. Acting as the foundation for substrate-based processing is a collection of techniques such as physical and chemical vapor deposition, epitaxy, self- and directed assembly, and a host of lithographic methods. These techniques allow for precise control over nanostructure placement, but where the fabrication of sophisticated architectures and sub-50 nm feature sizes are often unattainable or reliant on the use of technically demanding cost-prohibitive routes. In contrast, solution-based chemistry allows for the formation of complex nanostructures while maintaining synthetic ease, cost-effectiveness, and exacting control over monodispersity, size, shape, composition, and crystallinity. While many methods exist for the dispersal of colloids onto substrates, few are capable of achieving nanostructure ensembles where nanostructure placement allows for true long-range order as well as control over the crystallographic alignment of the nanostructures relative to each other and the underlying substrate. A more exhaustive comparison of these two approaches reveals that, more often than not, a weakness of substrate-based processing is a strength of colloidal synthesis and vice versa. In this Account, we describe a synthetic strategy devised and validated by the Neretina laboratory that integrates the competencies of substrate-based techniques with colloidal chemistry and, in doing so, brings this rich and exciting chemistry and its associated functionalities to the substrate surface. The strategy takes advantage of an impressive collection of seed-mediated solution-based protocols in which dispersed seeds direct noble metal nanostructure formation along orderly reaction pathways. It, however, replaces the seed colloid with substrate-immobilized templates formed in periodic arrays where the crystallographic orientation of the templates is defined by an epitaxial relationship with the substrate. Demonstrated are syntheses at the liquid-substrate interface in which organized surfaces of crystalline templates formed through templated dewetting are subjected to galvanic replacement, preferential etching, and/or heterogeneous deposition facilitated by redox reactions in both the presence and absence of capping agents. While the protocols utilized are adapted from some of the most well-studied colloidal syntheses, in no case do they yield reaction products that are identical since the substrate inflicts asymmetries onto the growth mode. We believe that the strategy described herein not only demonstrates a family of nanostructures unobtainable through other means but also establishes a synthetic foundation that offers unprecedented flexibility, expands the palette of accessible template materials, provides a new vantage point from which complex reactions occurring in liquid media can be examined, and has the potential to underpin photovoltaic, catalytic, and sensing applications reliant on substrate-based noble metal nanostructures.

20.
Small ; 12(25): 3444-52, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27174815

ABSTRACT

Seed-mediated syntheses utilizing facet-selective surface passivation provide the necessary chemical controls to direct noble metal nanostructure formation to a predetermined geometry. The foremost protocol for the synthesis of (111)-faceted Ag octahedra involves the reduction of metal ions onto pre-existing seeds in the presence of citrate and ascorbic acid. It is generally accepted that the capping of (111) facets with citrate dictates the shape while ascorbic acid acts solely as the reducing agent. Herein, a citrate-based synthesis is demonstrated in which the presence or absence of ascorbic acid is the shape-determining factor. Reactions are carried out in which Ag(+) ions are reduced onto substrate-immobilized Ag, Au, Pd, and Pt seeds. Syntheses lacking ascorbic acid, in which citrate acts as both the capping and the reducing agent, result in a robust nanocube growth mode able to withstand wide variations in the concentration of reactants, reaction rates, seed material, seed orientation and faceting, pH, and substrate material. If, however, ascorbic acid is included in these syntheses, then the growth mode reverts to one that advances the octahedral geometry. The implication of these results is that citrate, or one of its oxidation products, selectively caps (100) facets, but where this capability is compromised by ascorbic acid.

SELECTION OF CITATIONS
SEARCH DETAIL
...