Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Materials (Basel) ; 16(4)2023 Feb 07.
Article En | MEDLINE | ID: mdl-36837025

This study investigates the influence of strain rate on plastic deformation developed in the flange of a steel road barrier. This effect can be investigated by the use of the uniaxial tensile test. It was found that the strain rate increases yield as well as ultimate strength and gently drops down the elongation at break. Moreover, the accelerated strain rate is connected with matrix heating and increasing the Taylor-Quinney coefficient. Despite the valuable matrix heating and the higher Taylor-Quinney coefficient at the higher strain rates, samples necking is initiated earlier and dislocation density is higher. Flange grains become preferentially aligned along the direction of uniaxial stress, especially at the higher plastic strains. Finally, surface Zn protective layer delamination is initiated quite early beyond the yielding. It is considered that the cracks are due to the different response of the Zn allayer and underlying steel matrix on the plastic straining. Increasing strain rate attenuates the degree of Zn layer delamination.

2.
Materials (Basel) ; 16(4)2023 Feb 17.
Article En | MEDLINE | ID: mdl-36837340

This paper investigates the influence of cutting speed and flank wear on the depth profile of residual stresses, as well as the fraction of retained austenite after hard turning of quenched bearing steel 100Cr6. Residual stress and retained austenite profiles were studied for the white layer, heat-affected zone thickness, and XRD sensing depth. It was found that the influence of flank wear on the white layer and heat-affected zone thickness predominates. On the other hand, residual stresses are affected the cutting speed and the superimposing contribution of flank wear. Moreover, these aspects also alter microhardness in the affected regions. The study also demonstrates that information concerning residual stresses and the austenite fraction is integrated into the white layer, and the heat-affected zone in the surface is produced by the insert of low flank wear since the XRD sensing depth is more than the thickness of the white layer. On the other hand, the pure contribution of the white layer or the heat-affected zone to residual stress and the austenite fraction can be investigated when the affected surface region is thick enough.

3.
Materials (Basel) ; 15(24)2022 Dec 14.
Article En | MEDLINE | ID: mdl-36556742

One specific group of materials with excellent application potential are powder-compacted soft magnetic materials. These materials have been intensively studied by materials scientists to improve their magnetic properties. This work describes the influence of mechanical smoothing applied to Ni80Fe15Mo5 (wt.%) alloy particle surfaces before the process of compaction. The soft magnetic properties of compacted powders prepared from smoothed and non-smoothed particles were investigated using the following measurements: coercive field, permeability, excess loss, and Barkhausen noise analysis. We found that compactions prepared with smoothed powder particles exhibit a lower value of coercivity (4.80 A/m), higher initial (10,850) and maximum relative permeability (27,700), and low-frequency core losses (1.54 J/m3) in comparison with compactions prepared with non-smoothed particles.

4.
Materials (Basel) ; 15(20)2022 Oct 17.
Article En | MEDLINE | ID: mdl-36295303

Low alloyed steels of low, medium, or high strength are frequently used for many applications in the automotive, civil (bridges), aerospace, and petrochemical industries. A variety of thermomechanical regimes, in which these steels can be produced, enable customization of their matrix with respect to their fatigue resistance, resistance against friction and impact wear, fracture toughness, corrosion resistance, etc. This study analyses the influence of magnetising conditions on Barkhausen noise and other extracted parameters. It was found that the increasing magnetising frequency makes Barkhausen noise weaker, especially in the high strength low alloyed steels, as a result of the decreasing magnetic field in a sample. For this reason, increasing fraction of domain walls is unpinned at the higher frequencies. Barkhausen noise for the high strength low alloyed steels at higher frequencies is remarkably attenuated. Moreover, the different behaviour with respect to direction of the sheet rolling and the transversal direction, can be found due to realignment of the domain walls. This study demonstrates that the position of Barkhausen noise envelopes and the number of Barkhausen noise pulses increase in a systematic manner at the lower magnetising frequencies. Those parameters can be employed for distinction of the low alloyed steels, investigated in this study. However, the increasing magnetising frequency makes attenuation of Barkhausen noise more remarkable for the low alloyed steels of the higher strength. Therefore, the effective value of Barkhausen noise, at the magnetising frequency 750 Hz, in the rolling direction exhibits the systematic descent along with the increasing yield strength. This parameter can be used for distinction of the low alloyed steels after their thermomechanical processing, as well.

5.
Materials (Basel) ; 15(5)2022 Feb 24.
Article En | MEDLINE | ID: mdl-35268946

This paper investigates surface state after turning of the high tempered bearing steel 100Cr6 with a hardness of 40 HRC. White layer (WL) thickness and its microhardness, as well as surface roughness, are investigated as a function of tool flank wear VB as well as cutting speed vc. The mechanical and thermal load of the machined surface were analysed in order to provide a deeper insight into their superimposing contribution. Cutting energy expressed in terms of cutting force was analyses as that consumed for chip formation Fγ and consumed in the flank wear land Fα. It was found that the mechanical energy expressed in terms of the shear components of the Fα grows with VB, converts to the heat and strongly affects the thickness of the re-hardened layer. Furthermore, the superimposing contribution of the heat generation and its duration in the VB region should also be taken into account. It was also found that the influence of VB predominates over the variable cutting speed.

6.
Materials (Basel) ; 15(5)2022 Mar 03.
Article En | MEDLINE | ID: mdl-35269130

This study deals with monitoring of Zn layer heterogeneity on the flange of steel road barriers using magnetic measurements. The Barkhausen noise technique is employed for such purpose, and parameters extracted from Barkhausen noise signals are correlated with the true thickness of the Zn layer. The true values of the Zn layer were obtained from the metallographic images, as well as the thickness gauge CM-8825FN (Guangzhou Landtek Instruments Co. Ltd., Guangzhou, China) device. It was observed that the diffusion region lies below the Zn protective layer, which makes the thickness of the Zn layer obtained from the CM-8825FN device thicker than that measured on the metallographic images. For this reason, the chemical gradient of Zn below the Zn layer can be reported, and it affects Barkhausen noise emission. Barkhausen noise decreases along with increasing thickness of the Zn layer, and Barkhausen noise envelopes are shifted to stronger magnetic fields. The number of strong MBN pulses drops down with the increasing thickness of Zn coating at the expense of the increasing number of the weak MBN pulses. The thickness of Zn coating can be polluted by the solidification of Zn melt after galvanizing. The presence of the diffusion layer dims the contrast between ferromagnetic and paramagnetic phases.

7.
ISA Trans ; 125: 318-329, 2022 Jun.
Article En | MEDLINE | ID: mdl-34389176

This paper investigates the rate of transformation induced plasticity in TRIP steel (TRansformation-Induced Plasticity) after plastic straining by the use of Barkhausen noise emission. The samples were subjected to a variable degree of plastic straining and analysed by the use of conventional techniques such SEM, XRD, as well as microhardness in order to investigate residual stress and microstructural alterations initiated by the uniaxial tensile test. Barkhausen noise emission is analysed as a function of plastic straining as well as in the direction of the exerted load and interpreted with respect to the aforementioned microstructure and stress alterations. It was found that Barkhausen noise markedly decreases along with increasing plastic straining, up to 20%, followed by a strain region in which the evolution of Barkhausen noise reaches saturation. Samples after the tensile test exhibited marked magnetic anisotropy since the Barkhausen noise emission in the direction perpendicular to the tensile stress remained less affected. Apart from the effective value of Barkhausen noise, the Barkhausen noise envelopes were also analysed.

8.
Materials (Basel) ; 14(5)2021 Mar 08.
Article En | MEDLINE | ID: mdl-33800400

This study is focused on the asymmetrical Barkhausen noise emission of a hard milled surface during cyclic magnetisation. The Barkhausen noise is studied as a function of the magnetising voltage and the hard milled surface is compared with a surface after heat treatment. The asymmetry in the Barkhausen noise emission after hard milling occurs due to the typical "sandwich" structure and the different magnetic hardnesses of the different layers beneath the free surface. Furthermore, this asymmetry is also due to the preferential orientation of the matrix in the direction of the cutting speed and magnetostatic fields, which hinder or favour the premagnetising process.

9.
Materials (Basel) ; 13(20)2020 Oct 15.
Article En | MEDLINE | ID: mdl-33076364

This study investigates the microstructure, residual stress state, and the corresponding magnetic anisotropy of the ship structure samples made of S235 steel after uniaxial tensile deformation. A non-destructive magnetic technique based on Barkhausen noise is employed for fast and reliable monitoring of samples exposed to the variable degrees of plastic straining. It was found that the progressively developed plastic straining of the matrix results in an alteration of the easy axis of magnetization, stress anisotropy (expressed in residual stresses state) as well as the corresponding Barkhausen noise emission. Moreover, remarkable non-homogeneity can be found within the plastically strained region, especially when the localized plastic straining takes place.

10.
Materials (Basel) ; 12(20)2019 Oct 22.
Article En | MEDLINE | ID: mdl-31652504

This paper deals with the assessment of a real prestressed tendon by the use of Barkhausen noise emission. The tendon was obtained from a real highway bridge after 33 years in service. Barkhausen noise is studied as a function of the stress state, and the Barkhausen noise signals received directly from the tendon on the real bridge are compared with the Barkhausen noise signals received from the tendon during loading in the laboratory. Assessment of the prestressing is based on the analysis of the effective value of the Barkhausen noise signal as well as the position in which the Barkhausen noise envelopes attain a maximum.

11.
Materials (Basel) ; 12(4)2019 Feb 22.
Article En | MEDLINE | ID: mdl-30813252

This paper reports on an investigation treating a hard-milled surface as a surface undergoing severe plastic deformation at elevated temperatures. This surface exhibits remarkable magnetic anisotropy (expressed in term of Barkhausen noise). This paper also shows that Barkhausen noise emission in a hard-milled surface is a function of tool wear and the corresponding microstructure transformations initiated in the tool/machined surface interface. The paper discusses the specific character of Barkhausen noise bursts and the unusually high magnitude of Barkhausen noise pulses, especially at a low degree of tool wear. The main causes can be seen in specific structures and the corresponding domain configurations formed during rapid cooling following surface heating. Domains are not randomly but preferentially oriented in the direction of the cutting speed. Barkhausen noise signals (measured in two perpendicular directions such as cutting speed and feed direction) indicate that the mechanism of Bloch wall motion during cyclic magnetization in hard-milled surfaces differs from surfaces produced by grinding cycles or the raw surface after heat treatment.

...