Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Glob Health Action ; 14(sup1): 2008139, 2021 10 26.
Article in English | MEDLINE | ID: mdl-35377284

ABSTRACT

Global health research partnerships with institutions from high-income countries and low- and middle-income countries are one of the European Commission's flagship programmes. Here, we report on the ZikaPLAN research consortium funded by the European Commission with the primary goal of addressing the urgent knowledge gaps related to the Zika epidemic and the secondary goal of building up research capacity and establishing a Latin American-European research network for emerging vector-borne diseases. Five years of collaborative research effort have led to a better understanding of the full clinical spectrum of congenital Zika syndrome in children and the neurological complications of Zika virus infections in adults and helped explore the origins and trajectory of Zika virus transmission. Individual-level data from ZikaPLAN`s cohort studies were shared for joint analyses as part of the Zika Brazilian Cohorts Consortium, the European Commission-funded Zika Cohorts Vertical Transmission Study Group, and the World Health Organization-led Zika Virus Individual Participant Data Consortium. Furthermore, the legacy of ZikaPLAN includes new tools for birth defect surveillance and a Latin American birth defect surveillance network, an enhanced Guillain-Barre Syndrome research collaboration, a de-centralized evaluation platform for diagnostic assays, a global vector control hub, and the REDe network with freely available training resources to enhance global research capacity in vector-borne diseases.


Subject(s)
Zika Virus Infection , Zika Virus , Adult , Brazil , Child , Global Health , Humans , Infectious Disease Transmission, Vertical , Zika Virus Infection/complications , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control
2.
Glob Health Action ; 12(1): 1666566, 2019.
Article in English | MEDLINE | ID: mdl-31640505

ABSTRACT

Zika Preparedness Latin American Network (ZikaPLAN) is a research consortium funded by the European Commission to address the research gaps in combating Zika and to establish a sustainable network with research capacity building in the Americas. Here we present a report on ZikaPLAN`s mid-term achievements since its initiation in October 2016 to June 2019, illustrating the research objectives of the 15 work packages ranging from virology, diagnostics, entomology and vector control, modelling to clinical cohort studies in pregnant women and neonates, as well as studies on the neurological complications of Zika infections in adolescents and adults. For example, the Neuroviruses Emerging in the Americas Study (NEAS) has set up more than 10 clinical sites in Colombia. Through the Butantan Phase 3 dengue vaccine trial, we have access to samples of 17,000 subjects in 14 different geographic locations in Brazil. To address the lack of access to clinical samples for diagnostic evaluation, ZikaPLAN set up a network of quality sites with access to well-characterized clinical specimens and capacity for independent evaluations. The International Committee for Congenital Anomaly Surveillance Tools was formed with global representation from regional networks conducting birth defects surveillance. We have collated a comprehensive inventory of resources and tools for birth defects surveillance, and developed an App for low resource regions facilitating the coding and description of all major externally visible congenital anomalies including congenital Zika syndrome. Research Capacity Network (REDe) is a shared and open resource centre where researchers and health workers can access tools, resources and support, enabling better and more research in the region. Addressing the gap in research capacity in LMICs is pivotal in ensuring broad-based systems to be prepared for the next outbreak. Our shared and open research space through REDe will be used to maximize the transfer of research into practice by summarizing the research output and by hosting the tools, resources, guidance and recommendations generated by these studies. Leveraging on the research from this consortium, we are working towards a research preparedness network.


Subject(s)
Disease Outbreaks/prevention & control , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Americas , Brazil , Capacity Building/organization & administration , Congenital Abnormalities/epidemiology , Congenital Abnormalities/prevention & control , Female , Health Services Accessibility/organization & administration , Humans , Infant, Newborn , Mosquito Control/organization & administration , Population Surveillance , Pregnancy , Zika Virus , Zika Virus Infection/diagnosis
3.
Global health action, v. 12, n. 1, p. 1666566, oct. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2866

ABSTRACT

Zika Preparedness Latin American Network (ZikaPLAN) is a research consortium funded by the European Commission to address the research gaps in combating Zika and to establish a sustainable network with research capacity building in the Americas. Here we present a report on ZikaPLAN's mid-term achievements since its initiation in October 2016 to June 2019, illustrating the research objectives of the 15 work packages ranging from virology, diagnostics, entomology and vector control, modelling to clinical cohort studies in pregnant women and neonates, as well as studies on the neurological complications of Zika infections in adolescents and adults. For example, the Neuroviruses Emerging in the Americas Study (NEAS) has set up more than 10 clinical sites in Colombia. Through the Butantan Phase 3 dengue vaccine trial, we have access to samples of 17,000 subjects in 14 different geographic locations in Brazil. To address the lack of access to clinical samples for diagnostic evaluation, ZikaPLAN set up a network of quality sites with access to well-characterized clinical specimens and capacity for independent evaluations. The International Committee for Congenital Anomaly Surveillance Tools was formed with global representation from regional networks conducting birth defects surveillance. We have collated a comprehensive inventory of resources and tools for birth defects surveillance, and developed an App for low resource regions facilitating the coding and description of all major externally visible congenital anomalies including congenital Zika syndrome. Research Capacity Network (REDe) is a shared and open resource centre where researchers and health workers can access tools, resources and support, enabling better and more research in the region. Addressing the gap in research capacity in LMICs is pivotal in ensuring broad-based systems to be prepared for the next outbreak. Our shared and open research space through REDe will be used to maximize the transfer of research into practice by summarizing the research output and by hosting the tools, resources, guidance and recommendations generated by these studies. Leveraging on the research from this consortium, we are working towards a research preparedness network.

4.
Antiviral Res ; 160: 137-142, 2018 12.
Article in English | MEDLINE | ID: mdl-30385306

ABSTRACT

Usutu virus (USUV) is an emerging flavivirus that causes Usutu disease mainly in birds, but infection of mammals such as rodents, bats and horses has also been demonstrated. In addition, human cases (both in immunocompromised and -competent individuals) were also reported. Large outbreaks with other flaviviruses, such as West Nile virus and Zika virus, indicate that one should be vigilant for yet other outbreaks. To allow the identification of inhibitors of USUV replication, we established in vitro antiviral assays, which were validated using a small selection of known flavivirus inhibitors, including the broad-spectrum viral RNA polymerase inhibitor favipiravir (T-705). Next, an USUV infection model in AG129 (IFN-α/ß and IFN-γ receptor knockout) mice was established. AG129 mice proved highly susceptible to USUV; an inoculum as low as 102 PFU (1.3 × 105 TCID50) resulted in the development of symptoms as early as 3 days post infection with viral RNA being detectable in various tissues. Treatment of mice with favipiravir (150 mg/kg/dose, BID, oral gavage) significantly reduced viral load in blood and tissues and significantly delayed virus-induced disease. This USUV mouse model is thus amenable for assessing the potential in vivo efficacy of (novel) USUV/flavivirus inhibitors.


Subject(s)
Amides/pharmacology , Antiviral Agents/pharmacology , Flavivirus Infections/drug therapy , Flavivirus/drug effects , Pyrazines/pharmacology , Virus Replication/drug effects , Amides/administration & dosage , Animal Structures/virology , Animals , Antiviral Agents/administration & dosage , Disease Models, Animal , Flavivirus/physiology , Flavivirus Infections/pathology , Flavivirus Infections/virology , Mice , Microbial Sensitivity Tests , Pyrazines/administration & dosage , Treatment Outcome , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL