Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 67(5): e0035523, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37125913

ABSTRACT

The treatment of bacterial infections is becoming increasingly challenging with the emergence of antimicrobial resistance. Thus, the development of antimicrobials with novel mechanisms of action is much needed. Previously, we designed several cationic main-chain imidazolium compounds and identified the polyimidazolium PIM1 as a potent antibacterial against a wide panel of multidrug-resistant nosocomial pathogens, and it had relatively low toxicity against mammalian epithelial cells. However, little is known about the mechanism of action of PIM1. Using an oligomeric version of PIM1 with precisely six repeating units (OIM1-6) to control for consistency, we showed that OIM1-6 relies on an intact membrane potential for entry into the bacterial cytoplasm, as resistant mutants to OIM1-6 have mutations in their electron transport chains. These mutants demonstrate reduced uptake of the compound, which can be circumvented through the addition of a sub-MIC dose of colistin. Once taken up intracellularly, OIM1-6 exerts double-stranded DNA breaks. Its potency and ability to kill represents a promising class of drugs that can be combined with membrane-penetrating drugs to potentiate activity and hedge against the rise of resistant mutants. In summary, we discovered that cationic antimicrobial OIM1-6 exhibits an antimicrobial property that is dissimilar to the conventional cationic antimicrobial compounds. Its killing mechanism does not involve membrane disruption but instead depends on the membrane potential for uptake into bacterial cells so that it can exert its antibacterial effect intracellularly.


Subject(s)
Anti-Infective Agents , Antimicrobial Cationic Peptides , Animals , DNA, Bacterial , Membrane Potentials , Antimicrobial Cationic Peptides/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria , Microbial Sensitivity Tests , Mammals
2.
Nat Commun ; 12(1): 3427, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103518

ABSTRACT

Partially unfolded alpha-lactalbumin forms the oleic acid complex HAMLET, with potent tumoricidal activity. Here we define a peptide-based molecular approach for targeting and killing tumor cells, and evidence of its clinical potential (ClinicalTrials.gov NCT03560479). A 39-residue alpha-helical peptide from alpha-lactalbumin is shown to gain lethality for tumor cells by forming oleic acid complexes (alpha1-oleate). Nuclear magnetic resonance measurements and computational simulations reveal a lipid core surrounded by conformationally fluid, alpha-helical peptide motifs. In a single center, placebo controlled, double blinded Phase I/II interventional clinical trial of non-muscle invasive bladder cancer, all primary end points of safety and efficacy of alpha1-oleate treatment are reached, as evaluated in an interim analysis. Intra-vesical instillations of alpha1-oleate triggers massive shedding of tumor cells and the tumor size is reduced but no drug-related side effects are detected (primary endpoints). Shed cells contain alpha1-oleate, treated tumors show evidence of apoptosis and the expression of cancer-related genes is inhibited (secondary endpoints). The results are especially encouraging for bladder cancer, where therapeutic failures and high recurrence rates create a great, unmet medical need.


Subject(s)
Peptides/chemistry , Peptides/therapeutic use , Urinary Bladder Neoplasms/drug therapy , Amino Acid Sequence , Apoptosis/drug effects , Cell Line, Tumor , Endocytosis/drug effects , Endpoint Determination , Gene Expression Regulation, Neoplastic/drug effects , Humans , Oleic Acids/chemistry , Peptides/pharmacology , Placebos , Protein Conformation , Proton Magnetic Resonance Spectroscopy , Thermodynamics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL