Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 222
Filter
1.
J Mater Chem B ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39363751

ABSTRACT

Hydrogen sulfide (H2S) is a critical bioregulator implicated in numerous physiological and pathological processes, including cancer and neurodegenerative diseases. Compared with traditional instrument analysis, fluorescence detection technology based on small molecules in real-time and in situ sensing H2S has attracted attention. In this investigation, we developed a system of coumarin-based fluorophores linked with aminopyridine via a dipolar imino-double bond. Their aggregation-induced emission (AIE) behaviors were further regulated via structural isomerism engineering. Owing to restricting intramolecular motions and high molecular dipole moment, 2-amino-pyridyl-substituted coumarin (CMR-o-Py) forms stable AIE nanoaggregates with brighter fluorescence than the others. The CMR-o-Py nanoaggregates serve as probes for sensing H2S with a detection limit of 18.1 µM in a hydrophilic environment via Michael addition between imino-bond and sulfide ions. The 1 : 1 stoichiometric binding energy constant between the probe and H2S is 5.68 × 108 M-1, and its half-time of the first-order binding reaction was estimated to be 4.85 min. Moreover, CMR-o-Py, with excellent biocompatibility, holds promise as an ideal sensor for endogenous H2S in living cells and onion tissues, further highlighting its potential application in biological fields.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 326: 125214, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39332167

ABSTRACT

Rapid and sensitive detection of glyphosate (GLP) holds significant importance in the monitoring of environmental pollution and potential risks to human health. In this study, carbon dots nanozymes (CDszymes) with peroxidase-like activity were synthesized rapidly using a microwave-assisted method, employing expired drugs as raw materials. In the presence of H2O2, CDszymes catalyze the oxidation of TMB to generate blue oxTMB, which exhibits a photothermal effect under near-infrared light irradiation; an inner filter effect (IFE) may occur between oxTMB and CDszymes. By coupling the cascade catalysis of AChE and ChOx to generate H2O2, GLP effectively inhibits the activity of AChE, constructing a colorimetric/fluorescent/photothermal response platform for GLP. In colorimetry, the detection limit of GLP was 0.33 ng/mL. The detection limits of GLP by fluorescence method and photothermal method were 0.02 ng/mL and 0.41 ng/mL, respectively. The efficacy of this methodology has been successfully demonstrated in fruit and vegetable, it also provides a strategy for the high-value conversion of expired drugs.

3.
Chemistry ; : e202402654, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39243165

ABSTRACT

Herein a catalyst-free solvent-controlled method for the divergent synthesis of spirocyclopropyl and spiropyrazoline oxindoles from 3-ylideneoxindoles and ethyl diazoacetate was developed. With ClCH2CH2Cl as the solvent, spirocyclopropyl oxindoles were obtained in moderate to excellent yields, whereas the use of MeOH as solvent afforded spiropyrazoline oxindoles in moderate to good yields. The readily available substrates, simple operation and various product transformations further highlighted the utility of this method.

4.
Discov Oncol ; 15(1): 512, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39347882

ABSTRACT

PURPOSE: The purpose of this study was to analyze the expression patterns of immune cells in renal cancer patients, including myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), CD3 + /CD4 + T cells, CD3 + / CD8 + T cells, and CD3- CD16 + CD56 + cells. In addition, this study will explore the correlation between these immune markers and the progression of renal cell carcinoma and evaluate their potential application in predicting the therapeutic effect of renal cell carcinoma. METHODS: In this study, 80 renal cancer patients who received treatment in our hospital from October 2022 to December 2023 were selected as the research object and 50 healthy people who underwent a physical examination at the same time were selected as the control group. All participants had a 3 ml venous blood sample taken in the morning on an empty stomach. All patients with renal cell carcinoma have been confirmed by histopathological diagnosis. Clinicopathological data including age, gender, BMI, clinical stage, tumor size and pathological type were collected.MDSC, Treg, CD3 + /CD4 + T cells, CD3 + /CD8 + T cells, the ratio of CD3 + /CD4 + T cells/CD3 + /CD8 + T cell and the expression level of CD3-CD16 + CD56 + cells were detected by flow cytometry. RESULTS: Through the detection of flow cytometry, we observed that there was no significant difference in gender, age, BMI and other baseline characteristics between renal cancer patients and healthy controls, and the P value was greater than 0.05. However, in the analysis of peripheral blood immune cell subsets, including CD3 + /CD4 + , CD3 + /CD8 + , CD3 + /CD4 + /CD3 + /CD8 + ratio, NK cells, regulatory T cells (T-reg), polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) and mononuclear myeloid-derived suppressor cells (M-MDSC) were significantly different between renal cell carcinoma group and normal control group (P < 0.05). Specifically, the expression levels of CD3 + /CD4 + and CD3 + /CD8 + cells in renal cancer patients were lower than those in normal subjects, while the expression levels of T-reg, PMN-MDSC and M-MDSC were relatively high. (2) In the flow cytometry analysis, the expression level of immune cell subsets in the peripheral blood of renal cancer patients was detected.The results showed that there was no significant correlation between the expression of CD3 + /CD4 + , CD3 + /CD8 + , CD3 + /CD4 + /CD3 + /CD8 + ratio, NK cells, T-reg cells, PMN-MDSC and M-MDSC and the sex, age, BMI and pathological type of the patients. These differences were not statistically significant (P > 0.05).At the same time, CD3 + /CD8 + T cells, the ratio of CD3 + /CD4 + /CD3 + /CD8 + and the expression level of NK cells were not significantly correlated with tumor size and clinical stage (P > 0.05). However, the expression levels of CD3 + /CD4 + cells, M-MDSC, PMN-MDSC, and T-reg cells were statistically significantly different with tumor size and clinical stage (P < 0.05).There was a significant difference between these indexes and lymph node metastasis (P < 0.05). (3) The results of Logistic regression analysis showed that the low expression of CD3 + /CD4 + lymphocytes and the high expression of T-reg, PMN-MDSC and M-MDSC in peripheral blood may be related to the clinical stage of renal cell carcinoma. CONCLUSION: (1) Compared with healthy individuals, patients with renal cell carcinoma showed a significant decrease in CD3 + /CD4 + T cells, CD3 + /CD8 + T cells and CD3-CD16 + CD56 + cells, while the CD4 + /CD8 + ratio increased. In addition, the number of PMN-MDSC, M-MDSC and T-reg cells was significantly increased compared with the normal population, indicating that the immune system function of patients was impaired. (2) The expression levels of CD3 + /CD4 + , PMN-MDSC, M-MDSC and T-reg were different in tumor size and clinical stage. Specifically, the expression levels of PMN-MDSC, M-MDSC, and T-reg increased correspondingly with the increase in tumor diameter and the progression of the clinical stage.

5.
Lab Chip ; 24(18): 4333-4343, 2024 09 10.
Article in English | MEDLINE | ID: mdl-39132910

ABSTRACT

The differences in the cross-sectional positions of cells in the detection area have a severe negative impact on achieving accurate characterization of the impedance spectra of cells. Herein, we proposed a three-dimensional (3D) inertial focusing based impedance cytometer integrating sheath fluid compression and inertial focusing for the high-accuracy electrical characterization and identification of tumor cells. First, we studied the effects of the particle initial position and the sheath fluid compression on particle focusing. Then, the relationship of the particle height and the signal-to-noise ratio (SNR) of the impedance signal was explored. The results showed that efficient single-line focusing of 7-20 µm particles close to the electrodes was achieved and impedance signals with a high SNR and a low coefficient of variation (CV) were obtained. Finally, the electrical properties of three types of tumor cells (A549, MDA-MB-231, and UM-UC-3 cells) were accurately characterized. Machine learning algorithms were implemented to accurately identify tumor cells based on the amplitude and phase opacities at multiple frequencies. Compared with traditional two-dimensional (2D) inertial focusing, the identification accuracy of A549, MDA-MB-231, and UM-UC-3 cells using our 3D inertial focusing increased by 57.5%, 36.4% and 36.6%, respectively. The impedance cytometer enables the detection of cells with a wide size range without causing clogging and obtains high SNR signals, improving applicability to different complex biological samples and cell identification accuracy.


Subject(s)
Electric Impedance , Humans , Cell Line, Tumor , Flow Cytometry/instrumentation , Signal-To-Noise Ratio
6.
Org Lett ; 26(33): 7031-7036, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39133549

ABSTRACT

A 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)-catalyzed cascade annulation reaction between p-quinamines and 3-formylchromones was developed, affording a series of benzopyrone-fused hydrobenzo[c,d]indoles in moderate to high yields with excellent diastereoselectivity. This cascade reaction is efficient since two new rings as well as one C-N, one C═C, and two C-C bonds are created in a single step. The scale-up synthesis and versatile transformations of the products further demonstrated the practicality and utility of this approach.

7.
Research (Wash D C) ; 7: 0431, 2024.
Article in English | MEDLINE | ID: mdl-39050821

ABSTRACT

Rapid diagnosis and real-time monitoring are of great important in the fight against cancer. However, most available diagnostic technologies are time-consuming and labor-intensive and are commonly invasive. Here, we describe CytoExam, an automatic liquid biopsy instrument designed based on inertial microfluidics and impedance cytometry, which uses a deep learning algorithm for the analysis of circulating tumor cells (CTCs). In silico and in vitro experiments demonstrated that CytoExam could achieve label-free detection of CTCs in the peripheral blood of cancer patients within 15 min. The clinical applicability of CytoExam was also verified using peripheral blood samples from 10 healthy donors and >50 patients with breast, colorectal, or lung cancer. Significant differences in the number of collected cells and predicted CTCs were observed between the 2 groups, with variations in the dielectric properties of the collected cells from cancer patients also being observed. The ultra-fast and minimally invasive features of CytoExam may pave the way for new paths for cancer diagnosis and scientific research.

8.
J Transl Med ; 22(1): 672, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033271

ABSTRACT

BACKGROUND: T cells play a pivotal role in chemotherapy-triggered anti-tumor effects. Emerging evidence underscores the link between impaired anti-tumor immune responses and resistance to paclitaxel therapy in triple-negative breast cancer (TNBC). Tumor-related endothelial cells (ECs) have potential immunoregulatory activity. However, how ECs regulate T cell activity during TNBC chemotherapy remains poorly understood. METHODS: Single-cell analysis of ECs in patients with TNBC receiving paclitaxel therapy was performed using an accessible single-cell RNA sequencing (scRNA-seq) dataset to identify key EC subtypes and their immune characteristics. An integrated analysis of a tumor-bearing mouse model, immunofluorescence, and a spatial transcriptome dataset revealed the spatial relationship between ECs, especially Tumor necrosis factor receptor (TNFR) 2+ ECs, and CD8+ T cells. RNA sequencing, CD8+ T cell proliferation assays, flow cytometry, and bioinformatic analyses were performed to explore the immunosuppressive function of TNFR2 in ECs. The downstream metabolic mechanism of TNFR2 was further investigated using RNA sequencing, cellular glycolysis assays, and western blotting. RESULTS: In this study, we identified an immunoregulatory EC subtype, characterized by enhanced TNFR2 expression in non-responders. By a mouse model of TNBC, we revealed a dynamic reduction in the proportion of the CD8+ T cell-contacting tumor vessels that could co-localize spatially with CD8+ T cells during chemotherapy and an increased expression of TNFR2 by ECs. TNFR2 suppresses glycolytic activity in ECs by activating NF-κB signaling in vitro. Tuning endothelial glycolysis enhances programmed death-ligand (PD-L) 1-dependent inhibitory capacity, thereby inducing CD8+ T cell suppression. In addition, TNFR2+ ECs showed a greater spatial affinity for exhausted CD8+ T cells than for non-exhausted CD8+ T cells. TNFR2 blockade restores impaired anti-tumor immunity in vivo, leading to the loss of PD-L1 expression by ECs and enhancement of CD8+ T cell infiltration into the tumors. CONCLUSIONS: These findings reveal the suppression of CD8+ T cells by ECs in chemoresistance and indicate the critical role of TNFR2 in driving the immunosuppressive capacity of ECs via tuning glycolysis. Targeting endothelial TNFR2 may serve as a potent strategy for treating TNBC with paclitaxel.


Subject(s)
CD8-Positive T-Lymphocytes , Drug Resistance, Neoplasm , Endothelial Cells , Glycolysis , Receptors, Tumor Necrosis Factor, Type II , Triple Negative Breast Neoplasms , Receptors, Tumor Necrosis Factor, Type II/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Glycolysis/drug effects , Animals , Humans , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Female , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Mice , Signal Transduction/drug effects
9.
Anal Chem ; 96(25): 10313-10321, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38857194

ABSTRACT

Mechanical phenotyping has been widely employed for single-cell analysis over recent years. However, most previous works on characterizing the cellular mechanical properties measured only a single parameter from one image. In this paper, the quasi-real-time multiparameter analysis of cell mechanical properties was realized using high-throughput adjustable deformability cytometry. We first extracted 12 deformability parameters from the cell contours. Then, the machine learning for cell identification was performed to preliminarily verify the rationality of multiparameter mechanical phenotyping. The experiments on characterizing cells after cytoskeletal modification verified that multiple parameters extracted from the cell contours contributed to an identification accuracy of over 80%. Through continuous frame analysis of the cell deformation process, we found that temporal variation and an average level of parameters were correlated with cell type. To achieve quasi-real-time and high-precision multiplex-type cell detection, we constructed a back propagation (BP) neural network model to complete the fast identification of four cell lines. The multiparameter detection method based on time series achieved cell detection with an accuracy of over 90%. To solve the challenges of cell rarity and data lacking for clinical samples, based on the developed BP neural network model, the transfer learning method was used for the identification of three different clinical samples, and finally, a high identification accuracy of approximately 95% was achieved.


Subject(s)
Single-Cell Analysis , Humans , Single-Cell Analysis/methods , Neural Networks, Computer , Microfluidic Analytical Techniques/instrumentation , Flow Cytometry/methods , Phenotype , High-Throughput Screening Assays/methods , Machine Learning , Lab-On-A-Chip Devices
10.
MedComm (2020) ; 5(6): e605, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38868328

ABSTRACT

During the ageing process, TNF-α can promote the expansion of myeloid-derived suppressor cells (MDSCs). However, it remains unclear which receptor(s) of TNF-α are involved in and how they modulate this process. Here, we report that TNFR2 hyperexpression induced by either TNF-α or IL-6, two proinflammatory factors of senescence-associated secretory phenotype (SASP), causes cellular apolarity and differentiation inhibition in aged MDSCs. Ex vivo overexpression of TNFR2 in young MDSCs inhibited their polarity and differentiation, whereas in vivo depletion of Tnfr2 in aged MDSCs promotes their differentiation. Consequently, the age-dependent increase of TNFR2 versus unaltered TNFR1 expression in aged MDSCs significantly shifts the balance of TNF-α signaling toward the TNFR2-JNK axis, which accounts for JNK-induced impairment of cell polarity and differentiation failure of aged MDSCs. Consistently, inhibiting JNK attenuates apolarity and partially restores the differentiation capacity of aged MDSCs, suggesting that upregulated TNFR2/JNK signaling is a key factor limiting MDSC differentiation during organismal ageing. Therefore, abnormal hyperexpression of TNFR2 represents a general mechanism by which extrinsic SASP signals disrupt intrinsic cell polarity behavior, thereby arresting mature differentiation of MDSCs with ageing, suggesting that TNFR2 could be a potential therapeutic target for intervention of ageing through rejuvenation of aged MDSCs.

11.
J Parkinsons Dis ; 14(4): 855-864, 2024.
Article in English | MEDLINE | ID: mdl-38701162

ABSTRACT

Background: Parkinson's disease (PD) is a common neurodegenerative disorder that is predominantly known for its motor symptoms but is also accompanied by non-motor symptoms, including anxiety. Objective: The underlying neurobiological substrates and brain network changes associated with comorbid anxiety in PD require further exploration. Methods: An analysis of oscillation-specific nodal properties in patients with and without anxiety was conducted using resting-state functional magnetic resonance imaging (rs-fMRI) and graph theory. We used a band-pass filtering approach to differentiate oscillatory frequency bands for subsequent functional connectivity (FC) and graph analyses. Results: The study included 68 non-anxiety PD (naPD) patients, 62 anxiety PD (aPD) patients, and 64 healthy controls (NC). Analyses of nodal betweenness centrality (BC), degree centrality (DC), and efficiency were conducted across multiple frequency bands. The findings indicated no significant differences in BC among naPD, aPD, and NC within the 0.01-0.08 Hz frequency range. However, we observed a specific reduction in BC at narrower frequency ranges in aPD patients, as well as differing patterns of change in DC and efficiency, which are believed to reflect the neurophysiological bases of anxiety symptoms in PD. Conclusions: Differential oscillation-specific nodal characteristics have been identified in PD patients with anxiety, suggesting potential dysregulations in brain network dynamics. These findings emphasize the complexity of brain network alterations in anxiety-associated PD and identify oscillatory frequencies as potential biomarkers. The study highlights the importance of considering oscillatory frequency bands in the analysis of brain network changes.


Subject(s)
Anxiety , Magnetic Resonance Imaging , Parkinson Disease , Humans , Parkinson Disease/physiopathology , Parkinson Disease/diagnostic imaging , Parkinson Disease/complications , Male , Female , Middle Aged , Aged , Anxiety/physiopathology , Anxiety/etiology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Brain/diagnostic imaging , Brain/physiopathology , Connectome
13.
Cell Cycle ; 23(6): 682-692, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38794797

ABSTRACT

Pumilio RNA-binding family member 1 (PUM1) has been implicated in both the progression of colorectal cancer and the regulation of inflammation. The role of PUM1 in the polarization of tumor-associated macrophages (TAMs) into the M2 phenotype has not yet been reported in hepatocellular carcinoma. Using the PUM1-knockout mice model, flow cytometry, and IHC, we validated the role of PUM1 in hepatocellular carcinoma (HCC) TAMs. One-way analysis of variance (ANOVA) or student's t-tests was used to compare the experimental groups. We found that PUM1 inhibited anti-tumor immunity in HCC through TAM-mediated inhibition of CD8+ T cells. We also showed that PUM1 promotes the transformation of TAMs into pro-tumorigenic M2-like phenotypes by activating cAMP signaling pathway. This study emphasized the potential of PUM1 as a target for immunotherapy in HCC through TAMs. The present study revealed the molecular mechanism underlying the pro-tumor role of PUM1 in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Macrophages , Mice, Knockout , RNA-Binding Proteins , Animals , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice , Macrophages/metabolism , Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology , Mice, Inbred C57BL , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Humans , Signal Transduction , Cell Line, Tumor
14.
Ultrasonics ; 141: 107331, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38685139

ABSTRACT

Different from the traditional frequency-mixing technique which employs a contacting transducer, the laser-induced acoustic nonlinear frequency-mixing detection technique utilizes a laser source to instigate crack motion and generate acoustic waves. Thus, apart from the temperature oscillation induced by the pump laser, the "basic temperature" originating from the probe laser can also influence the crack. This additional variable complicates the contact state of the crack, yielding a more diverse range of nonlinear acoustic signal attributes. In light of this, our study enhances the conventional opto-acoustic nonlinear frequency mixing experimental setup by integrating an independent heating laser beam. This modification isolates the impact of the "basic temperature" on crack width while also dialing down the probe laser power to mitigate its thermal effects. To amplify the sensitivity of crack detection, we deliberated on the optimal laser source parameters for this setup. Consequently, our revamped system, paired with fine-tuned parameters, captures nonlinear acoustic signals with an enriched feature set. This investigation can provide support for the non-contact opto-acoustic nonlinear frequency mixing technique in the detection and evaluation of micro-cracks.

15.
bioRxiv ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38585793

ABSTRACT

Transposable elements (TEs) make up the bulk of eukaryotic genomes and examples abound of TE-derived sequences repurposed for organismal function. The process by which TEs become coopted remains obscure because most cases involve ancient, transpositionally inactive elements. Reports of active TEs serving beneficial functions are scarce and often contentious due to difficulties in manipulating repetitive sequences. Here we show that recently active TEs in zebrafish encode products critical for embryonic development. Knockdown and rescue experiments demonstrate that the endogenous retrovirus family BHIKHARI-1 (Bik-1) encodes a Gag protein essential for mesoderm development. Mechanistically, Bik-1 Gag associates with the cell membrane and its ectopic expression in chicken embryos alters cell migration. Similarly, depletion of BHIKHARI-2 Gag, a relative of Bik-1, causes defects in neural crest development in zebrafish. We propose an "addiction" model to explain how active TEs can be integrated into conserved developmental processes.

16.
J Chromatogr A ; 1721: 464812, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38569297

ABSTRACT

In this work, a novel and efficient approach for sodium hypochlorite analysis is proposed via phase-conversion headspace technique, which is based on the gas chromatography (GC) detection of generated carbon dioxide (CO2) from the redox reaction of sodium hypochlorite with sodium oxalate. The data obtained by the proposed method suggest the high detecting precision and accuracy. In addition, the method has low detection limits (limit of quantification (LOQ) = 0.24 µg/mL), and the recoveries of added standard ranged from 98.33 to 101.27 %. The proposed phase-conversion headspace technique is efficient and automated, thereby offering an efficient strategy for highly efficient analysis of sodium hypochlorite and related products.


Subject(s)
Disinfectants , Sodium Hypochlorite , Disinfectants/analysis , Hypochlorous Acid , Chromatography, Gas/methods , Carbon Dioxide/analysis
17.
J Nat Prod ; 87(4): 705-712, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38547118

ABSTRACT

Penicilloneines A (1) and B (2) are the first reported quinolone-citrinin hybrids. They were isolated from the starfish-derived fungus Penicillium sp. GGF16-1-2, and their structures were elucidated using spectroscopic, chemical, computational, and single-crystal X-ray diffraction methods. Penicilloneines A (1) and B (2) share a common 4-hydroxy-1-methyl-2(1H)-quinolone unit; however, they differ in terms of citrinin moieties, and these two units are linked via a methylene bridge. Penicilloneines A (1) and B (2) exhibited antifungal activities against Colletotrichum gloeosporioides, with lethal concentration 50 values of 0.02 and 1.51 µg/mL, respectively. A mechanistic study revealed that 1 could inhibit cell growth and promote cell vacuolization and consequent disruption of the fungal cell walls via upregulating nutrient-related hydrolase genes, including putative hydrolase, acetylcholinesterase, glycosyl hydrolase, leucine aminopeptidase, lipase, and beta-galactosidase, and downregulating their synthase genes 3-carboxymuconate cyclase, pyruvate decarboxylase, phosphoketolase, and oxalate decarboxylase.


Subject(s)
Antifungal Agents , Citrinin , Colletotrichum , Penicillium , Quinolones , Penicillium/chemistry , Colletotrichum/drug effects , Quinolones/pharmacology , Quinolones/chemistry , Quinolones/isolation & purification , Molecular Structure , Animals , Citrinin/pharmacology , Citrinin/chemistry , Citrinin/isolation & purification , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Microbial Sensitivity Tests
18.
Ultrasonics ; 139: 107288, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38513438

ABSTRACT

Photo-thermal modulation-based nonlinear opto-acoustic frequency-mixing technique is an effective method for detecting micro-cracks. When using this technique for micro-crack detection, the selection of laser source parameters is particularly crucial. Compared to traditional piezo-transducer-based mixing techniques, the characteristic of using a laser as the detection source is the presence of thermal effects. The thermal effect caused by laser irradiation on the sample surface can not only generate acoustic waves but also affect the crack state, thus influencing nonlinear signals. In this paper, an experimental setup using photo-thermal modulation-based nonlinear opto-acoustic frequency-mixing technique has been set up to investigate the thermal effects of the probe laser source. In addition, a corresponding physical model has been established to discuss the physical mechanisms revealed by the experimental results. This study provides a basis for selecting appropriate probe source parameters and scanning positions of laser sources when detecting micro-cracks using the photo-thermal modulation-based nonlinear opto-acoustic frequency-mixing technique.

19.
J Ethnopharmacol ; 328: 118056, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38490287

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Urinary tract infections (UTIs) are globally prevalent infectious diseases, predominantly caused by uropathogenic Escherichia coli (UPEC). The misuse of antibiotics has led to the emergence of several drug-resistant strains. Traditional Chinese Medicine (TCM) has its own advantages in the treatment of UTIs. HJ granules is a herbal formula used for the treatment of UTIs. However, its mechanism of action is not clear. AIM OF THE STUDY: The aim of this study was to investigate the therapeutic efficacy and mechanism of action of HJ granules in a rat model of UTI caused by Escherichia coli (E coli) CFT073. MATERIALS AND METHODS: SD rats were selected to establish a rat UTI model by injecting UPEC strain CFT073 into the bladder using the transurethral placement method. HJ granules were administered to rats after modelling and the efficacy of HJ granule was investigated by measuring urinary decanalogue, inflammatory factors in bladder tissue and pathological changes in the bladder after 3d of administration. Expression of sonic hedgehog (SHH), NOD-like receptor thermoprotein domain 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and activation of cysteinyl aspartate specific proteinase-1 (caspase-1) were detected by western blotting and immunofluorescence staining in rat bladder tissue. NLRP3, ASC and caspase-1, a cysteine-containing aspartic protein, were expressed and activated. RESULTS: The results showed that infection of rats with UPEC resulted in increased pH and erythrocytes in bladder irrigation fluid; increased expression of IL-1ß, IL-6 and SHH and decreased expression of IL-10 in bladder tissue; and significant upregulation of the expression of both SHH and NLRP3 inflammasom and significant activation of NLRP3 inflammasom. HJ granules significantly increased the concentration of IL-10 in the bladder, inhibited the expression of SHH and NLRP3 inflammasom in bladder tissue, and suppressed the activation of NLRP3 inflammasom, thereby reducing inflammatory lesions in bladder tissue. CONCLUSION: HJ granules may improve bladder injury and treat UTIs by inhibiting the expression and activation of NLRP3 inflammasom.


Subject(s)
Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Escherichia coli , Interleukin-10 , Hedgehog Proteins , Escherichia coli Infections/drug therapy , Escherichia coli Infections/pathology , Rats, Sprague-Dawley , Urinary Tract Infections/drug therapy , Urinary Tract Infections/pathology , Caspase 1/metabolism
20.
JMIR Form Res ; 8: e50561, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324352

ABSTRACT

BACKGROUND: Tumor immunotherapy is an innovative treatment today, but there are limited data on the quality of immunotherapy information on social networks. Dissemination of misinformation through the internet is a major social issue. OBJECTIVE: Our objective was to characterize the quality of information and presence of misinformation about tumor immunotherapy on internet-based videos commonly used by the Chinese population. METHODS: Using the keyword "tumor immunotherapy" in Chinese, we searched TikTok, Tencent, iQIYI, and BiliBili on March 5, 2022. We reviewed the 118 screened videos using the Patient Education Materials Assessment Tool-a validated instrument to collect consumer health information. DISCERN quality criteria and the JAMA (Journal of the American Medical Association) Benchmark Criteria were used for assessing the quality and reliability of the health information. The videos' content was also evaluated. RESULTS: The 118 videos about tumor immunotherapy were mostly uploaded by channels dedicated to lectures, health-related animations, and interviews; their median length was 5 minutes, and 79% of them were published in and after 2018. The median understandability and actionability of the videos were 71% and 71%, respectively. However, the quality of information was moderate to poor on the validated DISCERN and JAMA assessments. Only 12 videos contained misinformation (score of >1 out of 5). Videos with a doctor (lectures and interviews) not only were significantly less likely to contain misinformation but also had better quality and a greater forwarding number. Moreover, the results showed that more than half of the videos contain little or no content on the risk factors and management of tumor immunotherapy. Overall, over half of the videos had some or more information on the definition, symptoms, evaluation, and outcomes of tumor immunotherapy. CONCLUSIONS: Although the quality of immunotherapy information on internet-based videos commonly used by Chinese people is moderate, these videos have less misinformation and better content. Caution must be exercised when using these videos as a source of tumor immunotherapy-related information.

SELECTION OF CITATIONS
SEARCH DETAIL