Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 256
Filter
1.
Curr Med Chem ; 31(31): 5097-5109, 2024.
Article in English | MEDLINE | ID: mdl-39225188

ABSTRACT

Human microbes are closely associated with a variety of complex diseases and have emerged as drug targets. Identification of microbe-related drugs is becoming a key issue in drug development and precision medicine. It can also provide guidance for solving the increasingly serious problem of drug resistance enhancement in viruses. METHODS: In this paper, we have proposed a novel model of layer attention graph convolutional network for microbe-drug association prediction. First, multiple biological data have been integrated into a heterogeneous network. Then, the heterogeneous network has been incorporated into a graph convolutional network to determine the embedded microbe and drug. Finally, the microbe-drug association scores have been obtained by decoding the embedding of microbe and drug based on the layer attention mechanism. RESULTS: To evaluate the performance of our proposed model, leave-one-out crossvalidation (LOOCV) and 5-fold cross-validation have been implemented on the two datasets of aBiofilm and MDAD. As a result, based on the aBiofilm dataset, our proposed model has attained areas under the curve (AUC) of 0.9178 and 0.9022 on global LOOCV and local LOOCV, respectively. Based on aBiofilm dataset, the proposed model has attained an AUC value of 0.9018 and 0.8902 on global LOOCV and local LOOCV, respectively. In addition, the average AUC and standard deviation of the proposed model for 5- fold cross-validation on the aBiofilm and MDAD datasets were 0.9141±6.8556e-04 and 0.8982±7.5868e-04, respectively. Also, two kinds of case studies have been further conducted to evaluate the proposed models. CONCLUSION: Traditional methods for microbe-drug association prediction are timeconsuming and laborious. Therefore, the computational model proposed was used to predict new microbe-drug associations. Several evaluation results have shown the proposed model to achieve satisfactory results and that it can play a role in drug development and precision medicine.


Subject(s)
Neural Networks, Computer , Humans , Bacteria/drug effects
2.
Nutr Res Pract ; 18(4): 479-497, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39109201

ABSTRACT

BACKGROUND/OBJECTIVES: Activating brown adipose tissue (BAT) and browning of white adipose tissue (WAT) can protect against obesity and obesity-related metabolic conditions. Cryptotanshinone (CT) regulates lipid metabolism and significantly ameliorates insulin resistance. Adenosine-5'-monophosphate (AMP)-activated protein kinase (AMPK), a receptor for cellular energy metabolism, is believed to regulate brown fat activity in humans. MATERIALS/METHODS: The in vivo study included high-fat-fed obese mice administered orally 200/400 mg/kg/d CT. They were evaluated through weight measurement, the intraperitoneal glucose tolerance test (IPGTT), intraperitoneal insulin tolerance test (IPITT), cold stimulation test, serum lipid (total cholesterol, triglycerides, and low-density lipoprotein) measurement, hematoxylin and eosin staining, and immunohistochemistry. Furthermore, the in vitro study investigated primary adipose mesenchymal stem cells (MSCs) with incubation of CT and AMPK agonists (acadesine)/inhibitor (Compound C). Cells were evaluated using Oil Red O staining, Alizarin red staining, flow cytometry, and immunofluorescence staining to identify and observe the osteogenic versus adipogenic differentiation. Quantitative real-time polymerase chain reaction and the Western blot were used to observe related gene expression. RESULTS: In the diet-induced obesity mouse model mice CT suppressed body weight, food intake, glucose levels in the IPGTT and IPTT, serum lipids, the volume of adipose tissue, and increased thermogenesis, uncoupling protein 1, and the AMPK pathway expression. In the in vitro study, CT prevented the formation of lipid droplets from MSCs while activating brown genes and the AMPK pathway. AMPK activator enhanced CT's effects, while the AMPK inhibitor reversed the effects of CT. CONCLUSION: CT promotes adipose tissue browning to increase body thermogenesis and reduce obesity by activating the AMPK pathway. This study provides an experimental foundation for the use of CT in obesity treatment.

3.
Anal Chem ; 96(32): 13174-13184, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39093925

ABSTRACT

The small molecule epiberberine (EPI) is a natural alkaloid with versatile bioactivities against several diseases including cancer and bacterial infection. EPI can induce the formation of a unique binding pocket at the 5' side of a human telomeric G-quadruplex (HTG) sequence with four telomeric repeats (Q4), resulting in a nanomolar binding affinity (KD approximately 26 nM) with significant fluorescence enhancement upon binding. It is important to understand (1) how EPI binding affects HTG structural stability and (2) how enhanced EPI binding may be achieved through the engineering of the DNA binding pocket. In this work, the EPI-binding-induced HTG structure stabilization effect was probed by a peptide nucleic acid (PNA) invasion assay in combination with a series of biophysical techniques. We show that the PNA invasion-based method may be useful for the characterization of compounds binding to DNA (and RNA) structures under physiological conditions without the need to vary the solution temperature or buffer components, which are typically needed for structural stability characterization. Importantly, the combination of theoretical modeling and experimental quantification allows us to successfully engineer Q4 derivative Q4-ds-A by a simple extension of a duplex structure to Q4 at the 5' end. Q4-ds-A is an excellent EPI binder with a KD of 8 nM, with the binding enhancement achieved through the preformation of a binding pocket and a reduced dissociation rate. The tight binding of Q4 and Q4-ds-A with EPI allows us to develop a novel magnetic bead-based affinity purification system to effectively extract EPI from Rhizoma coptidis (Huang Lian) extracts.


Subject(s)
Berberine , G-Quadruplexes , Berberine/chemistry , Berberine/analogs & derivatives , Berberine/pharmacology , Humans , DNA/chemistry , Peptide Nucleic Acids/chemistry
4.
Angew Chem Int Ed Engl ; : e202411160, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192482

ABSTRACT

Air contains carbon, hydrogen, oxygen, and nitrogen elements that are essential for the constitution of amino acids. Converting the air into amino acids, powered with renewable electricity, provides a green and sustainable alternative to petrochemical-based methods that produce waste and pollution. Here, taking glycine as an example, we demonstrated the complete production chain for electrorefining amino acids directly from CO2, N2, and H2O. Such a prospective scheme was composed of three modules, linked by a spontaneous C-N bond formation process. The high-purity bridging intermediates, separated from the stepwise synthesis, boosted both the carbon selectivity from CO2 to glycine of 91.7% and nitrogen selectivity from N2 to glycine of 98.7%. Under the optimum condition, we obtained glycine with a partial current density of 160.8 mA cm-2. The high-purity solid glycine product was acquired with a separation efficiency of 98.4%. This work unveils a green and sustainable method for the abiotic creation of amino acids from the air components.

5.
Int J Mol Sci ; 25(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39062881

ABSTRACT

Ubiquitination, a post-translational modification, refers to the covalent attachment of ubiquitin molecules to substrates. This modification plays a critical role in diverse cellular processes such as protein degradation. The specificity of ubiquitination for substrates is regulated by E3 ubiquitin ligases. Dysregulation of ubiquitination has been associated with numerous diseases, including cancers. In our study, we first investigated the protein expression patterns of E3 ligases across 12 cancer types. Our findings indicated that E3 ligases tend to be up-regulated and exhibit reduced tissue specificity in tumors. Moreover, the correlation of protein expression between E3 ligases and substrates demonstrated significant changes in cancers, suggesting that E3-substrate specificity alters in tumors compared to normal tissues. By integrating transcriptome, proteome, and ubiquitylome data, we further characterized the E3-substrate regulatory patterns in lung squamous cell carcinoma. Our analysis revealed that the upregulation of the SKP2 E3 ligase leads to excessive degradation of BRCA2, potentially promoting tumor cell proliferation and metastasis. Furthermore, the upregulation of E3 ubiquitin-protein ligase TRIM33 was identified as a biomarker associated with a favorable prognosis by inhibiting the cell cycle. This work exemplifies how leveraging multi-omics data to analyze E3 ligases across various cancers can unveil prognosis biomarkers and facilitate the identification of potential drug targets for cancer therapy.


Subject(s)
Neoplasms , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , S-Phase Kinase-Associated Proteins/metabolism , S-Phase Kinase-Associated Proteins/genetics , Proteomics/methods , Transcriptome , Proteome/metabolism , Prognosis , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Multiomics
6.
Talanta ; 278: 126565, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39018762

ABSTRACT

Bacteria infections pose a serious threat to public health, and it is urgent to develop facile and accurate detection methods. To meet the important need, a potable and high-sensitive surface enhanced Raman scattering (SERS) biosensor based on aptamer recognition and catalytic hairpin assembly (CHA) signal amplification was proposed for point-of-care detection of Staphylococcus aureus (S. aureus). The SERS biosensor contains three parts: recognition probes, SERS sensing chip, and SERS tags. The feasibility of the strategy was verified by gel electrophoresis, and the one-step test route was optimized. The bacteria SERS biosensor has a good linear relationship ranging from 10 to 107 CFU mL-1 with high sensitivity low to 5 CFU mL-1, and shows excellent specificity, uniformity, and repeatability on S. aureus identification and enumeration, which can distinguish S. aureus from other bacteria. The SERS biosensor shows a good recovery rate (95.73 %-109.65 %) for testing S. aureus spiked in milk, and has good practicability for detecting S. aureus infected mouse wound, which provides a facile and reliable approach for detection of trace bacteria in the real samples.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Spectrum Analysis, Raman , Staphylococcus aureus , Staphylococcus aureus/isolation & purification , Biosensing Techniques/methods , Aptamers, Nucleotide/chemistry , Spectrum Analysis, Raman/methods , Animals , Milk/microbiology , Milk/chemistry , Limit of Detection , Mice , Metal Nanoparticles/chemistry , Catalysis , Gold/chemistry , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology
7.
J Environ Sci (China) ; 146: 39-54, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38969461

ABSTRACT

To improve the selective separation performance of silica nanofibers (SiO2 NFs) for cesium ions (Cs+) and overcome the defects of Prussian blue nanoparticles (PB NPs), PB/SiO2-NH2 NFs were prepared to remove Cs+ from water. Among them, 3-aminopropyltriethoxysilane (APTES) underwent an alkylation reaction with SiO2, resulting in the formation of a dense Si-O-Si network structure that decorated the surface of SiO2 NFs. Meanwhile, the amino functional groups in APTES combined with Fe3+ and then reacted with Fe2+ to form PB NPs, which anchored firmly on the aminoated SiO2 NFs surface. In our experiment, the maximum adsorption capacity of PB/SiO2-NH2 NFs was 111.38 mg/g, which was 31.5 mg/g higher than that of SiO2 NFs. At the same time, after the fifth cycle, the removal rate of Cs+ by PB/SiO2-NH2 NFs adsorbent was 75.36% ± 3.69%. In addition, the adsorption isotherms and adsorption kinetics of PB/SiO2-NH2 NFs were combined with the Freundlich model and the quasi-two-stage fitting model, respectively. Further mechanism analysis showed that the bond between PB/SiO2-NH2 NFs and Cs+ was mainly a synergistic action of ion exchange, electrostatic adsorption and membrane separation.


Subject(s)
Cesium , Ferrocyanides , Nanofibers , Nanoparticles , Water Pollutants, Chemical , Water Purification , Ferrocyanides/chemistry , Nanofibers/chemistry , Water Pollutants, Chemical/chemistry , Cesium/chemistry , Adsorption , Water Purification/methods , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Kinetics , Propylamines/chemistry , Silanes
8.
Nat Commun ; 15(1): 5254, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898020

ABSTRACT

C2'-halogenation has been recognized as an essential modification to enhance the drug-like properties of nucleotide analogs. The direct C2'-halogenation of the nucleotide 2'-deoxyadenosine-5'-monophosphate (dAMP) has recently been achieved using the Fe(II)/α-ketoglutarate-dependent nucleotide halogenase AdaV. However, the limited substrate scope of this enzyme hampers its broader applications. In this study, we report two halogenases capable of halogenating 2'-deoxyguanosine monophosphate (dGMP), thereby expanding the family of nucleotide halogenases. Computational studies reveal that nucleotide specificity is regulated by the binding pose of the phosphate group. Based on these findings, we successfully engineered the substrate specificity of these halogenases by mutating second-sphere residues. This work expands the toolbox of nucleotide halogenases and provides insights into the regulation mechanism of nucleotide specificity.


Subject(s)
Protein Engineering , Substrate Specificity , Halogenation , Nucleotides/metabolism , Deoxyguanine Nucleotides/metabolism , Deoxyguanine Nucleotides/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism
9.
IBRO Neurosci Rep ; 16: 535-541, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38706972

ABSTRACT

Background: Ischaemic stroke can lead to many complications, but treatment options are limited. Icariin is a traditional Chinese medicine with reported neuroprotective effects against ischaemic cerebral injury; however, the underlying mechanisms by which icariin ameliorates cell apoptosis require further study. Purpose: This study aimed to investigate the therapeutic potential of icariin after ischaemic stroke and the underlying molecular mechanisms. Methods: N2a neuronal cells were used to create an in vitro oxygen-glucose deprivation (OGD) model. The effects of icariin on OGD cells were assessed using the CCK-8 kit to detect the survival of cells and based on the concentration, apoptosis markers, inflammation markers, and M2 pyruvate kinase isoenzyme (PKM2) expression were detected using western blotting, RT-qPCR, and flow cytometry. To investigate the underlying molecular mechanisms, we used the PKM2 agonist TEPP-46 and detected apoptosis-related proteins. Results: We demonstrated that icariin alleviated OGD-induced apoptosis in vitro. The expression levels of the apoptosis marker proteins caspase-3 and Bax were upregulated and Bcl-2 was downregulated. Furthermore, icariin reduced inflammation and downregulated the expression of PKM2. Moreover, activation of the PKM2 by pretreatment with the PKM2 agonist TEPP-46 enhanced the effects on OGD induced cell apoptosis in vitro. Conclusion: This study elucidated the underlying mechanism of PKM2 in OGD-induced cell apoptosis and highlighted the potential of icariin in the treatment of ischaemic stroke.

10.
Sci Total Environ ; 932: 173035, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38719031

ABSTRACT

Sea-to-air emissions of very short-lived brominated halocarbons (VSLBrHs) are known to contribute to 30 % of stratospheric and tropospheric ozone depletion. However, empirical data on their occurrence in open ocean are scarce, which makes it difficult to estimate the significant contribution of open ocean releases to the global budget of halocarbons. This study was conducted in 2022 to explore the spatial variations of VSLBrHs and their controlling factors in the western tropical Pacific Ocean (WTPO). The findings highlighted that high biological productivity and the resulting dissolved organic matter (DOM) as well as upwelling dynamics significantly influenced the distribution and production of VSLBrHs in seawater, with atmospheric levels primarily governed by oceanic emissions. Based on the simultaneous observation of seawater and atmospheric concentrations, the mean sea-to-air fluxes of CH2Br2, CHBr3, CHBrCl2, and CHBr2Cl were estimated to be 1.01, 6.65, 9.31, and 7.25 nmol m-2 d-1, respectively. Sea-to-air fluxes of these gases in the upwelling regions were 9.0, 4.6, 2.9, and 6.8 times those in the non-upwelling regions, respectively. Additionally, in-situ incubation experiments revealed that the enzymatic mediated biosynthesis pathways of VSLBrHs were enhanced under temperature and light-induced stress and in waters rich in humus-like substances. Therefore, we tentatively concluded that abundant photothermal conditions and the existence of upwelling in the WTPO made it a potential hotspot for the emission of VSLBrHs. This study offers critical insights into the environmental dynamics of VSLBrHs emissions and underscores the importance of regional oceanic conditions in influencing atmospheric greenhouse gas compositions.

11.
Stem Cell Res ; 77: 103427, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696852

ABSTRACT

The DNAJC19 gene, a member of DNAJ heat shock protein (Hsp40) family, is localized within the inner mitochondrial membrane (IMM) and plays a crucial role in regulating the function and localization of mitochondrial Hsp70 (MtHsp70). Mutations in the DNAJC19 gene cause Dilated Cardiomyopathy with Ataxia Syndrome (DCMA). The precise mechanisms underlying the DCMA phenotype caused by DNAJC19 mutations remain poorly understood, and effective treatment modalities were lacking unitl recently. By using CRISPR-Cas9 gene editing technology, this study generated a DNAJC19-knockout (DNAJC19-KO) human embryonic stem cell line (hESC), which will be a useful tool in studying the pathogenesis of DCMA.


Subject(s)
CRISPR-Cas Systems , HSP40 Heat-Shock Proteins , Human Embryonic Stem Cells , Humans , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Gene Knockout Techniques , Cell Line , Homozygote
12.
Brain ; 147(9): 2946-2965, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38748848

ABSTRACT

Alzheimer's disease, the most prevalent form of dementia, imposes a substantial societal burden. The persistent inadequacy of disease-modifying drugs targeting amyloid plaques and neurofibrillary tangles suggests the contribution of alternative pathogenic mechanisms. A frequently overlooked aspect is cerebrovascular dysfunction, which may manifest early in the progression of Alzheimer's disease pathology. Mounting evidence underscores the pivotal role of the apolipoprotein E gene, particularly the apolipoprotein ε4 allele as the strongest genetic risk factor for late-onset Alzheimer's disease, in the cerebrovascular pathology associated with Alzheimer's disease. In this review, we examine the evidence elucidating the cerebrovascular impact of both central and peripheral apolipoprotein E on the pathogenesis of Alzheimer's disease. We present a novel three-hit hypothesis, outlining potential mechanisms that shed light on the intricate relationship among different pathogenic events. Finally, we discuss prospective therapeutics targeting the cerebrovascular pathology associated with apolipoprotein E and explore their implications for future research endeavours.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Animals , Cerebrovascular Disorders/genetics , Cerebrovascular Disorders/metabolism
13.
J Gastrointest Cancer ; 55(3): 1105-1110, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38668776

ABSTRACT

BACKGROUND: Nanoparticle polymeric micellar paclitaxel (NPMP) is a novel Cremophor EL (CrEL)-free nanoparticle micellar formulation of paclitaxel. This study evaluated the efficacy and toxicity of NPMP in the treatment of patients with advanced gastric cancer (AGC). METHODS: Patients with histologically confirmed AGC in Jiangsu Cancer Hospital were retrospectively collected and divided into two groups. Patients in group A received NPMP at a total dose of 360 mg/m2 each cycle, and patients in group B were given paclitaxel at a dose of 210 mg/m2 each cycle. In addition, all patients received 5-fluorouracil at a dose of 0.75 g/m2 on days 1-4 and leucovorin at a dose of 200 mg/m2 on days 1-4 for at least 2 cycles. RESULTS: From January 2021 to May 2023, 63 patients (32 in group A and 31 in group B) could be evaluated for treatment response. A marked disparity in the overall response was observed between groups A and B, indicating statistical significance. The overall response rate was 31% in group A (10/32) and 10% in group B (3/31) (P = 0.034). Disease control rate was 91% in group A (29/32) and 81% in group B (25/31) (P = 0.440). No statistically significant difference in adverse reactions was observed between the two groups. However, the incidence of anemia, leucopenia, nausea, vomiting, diarrhea, liver dysfunction, and allergy in group A was notably lower than that in group B. CONCLUSIONS: NPMP combined chemotherapy offers a new, active, and safe treatment for patients with AGC.


Subject(s)
Micelles , Nanoparticles , Paclitaxel , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Paclitaxel/administration & dosage , Paclitaxel/therapeutic use , Paclitaxel/adverse effects , Male , Female , Middle Aged , Nanoparticles/administration & dosage , Retrospective Studies , Aged , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Agents, Phytogenic/adverse effects , Fluorouracil/administration & dosage , Fluorouracil/therapeutic use , Treatment Outcome , Leucovorin/therapeutic use , Leucovorin/administration & dosage
14.
Open Life Sci ; 19(1): 20220825, 2024.
Article in English | MEDLINE | ID: mdl-38415203

ABSTRACT

Long-term mechanical ventilation after tracheotomy is a common treatment in intensive care unit patients. This study investigated the differences among the effects of different wetting states on the airway, lung, and serum inflammatory factors. New Zealand rabbits (n = 36) were selected to construct tracheotomy models and then divided into four groups: Model, Mask, YTH, and Sham groups. Lung tissue dry/wet ratio was used to evaluate the humidification effect; cytokines, including tumor necrosis factor-α, interleukin (IL)-6, IL-8, and IL-10, were used to evaluate the inflammatory response; hematoxylin and eosin staining was used to evaluate the histopathology. Post hoc analysis based on the Dunnett t-test was applied. A self-developed integrated wetting device could increase the utilization of wetting solution, enhance the effect of wetting to protect tissue integrity, and suppress airway inflammation, reducing the expression of pro-inflammatory factors while promoting the expression of anti-inflammatory factor IL-10 to inhibit the inflammatory response, compared to other methods. The integrated humidification device provided a new method for clinical nursing practice, improving clinical efficiency and reducing nursing workload. Further clinical trials are required to test its effectiveness and safety in the clinic.

15.
Environ Res ; 251(Pt 1): 118579, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38423497

ABSTRACT

Halogenated organic contaminants, such as chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs), are some of the most important emerging environmental pollutants. However, empirical data on Cl/Br-PAHs in estuarine and marine ecosystems are limited, rendering assessments of Cl/Br-PAH contamination in estuarine and offshore environments uncertain. Here the occurrence, sources, and ecological risks of 7 Cl-PAHs and 18 Br-PAHs were determined in surface sediments of the Yangtze River Estuary (YRE), a highly urbanized and industrialized area, and its adjacent marine area. The concentrations of Cl-PAHs ranged from 4.50 to 18.38 ng g-1 (average 7.19 ng g-1), while those of Br-PAHs ranged from 4.80 to 61.18 ng g-1 (average 14.11 ng g-1). The dominant Cl-PAH and Br-PAH in surface sediment were 9-chlorofluorene (17.79%) and 9-bromofluorene (58.49%), respectively. The distributions and compositions of Cl/Br-PAHs in the surface sediments varied considerably due to complex hydrodynamic and depositional conditions in the YRE and its adjacent marine area, as well as differences in physicochemical properties of different Cl/Br-PAHs. Positive matrix factorization revealed that the primary sources of Cl/Br-PAHs in the study area were e-waste dismantling (33.6%), waste incineration (23.2%), and metal smelting (11.0%). According to the risk quotient, the Cl/Br-PAHs in sediments posed no toxic risk to aquatic organisms.


Subject(s)
Environmental Monitoring , Estuaries , Geologic Sediments , Polycyclic Aromatic Hydrocarbons , Rivers , Water Pollutants, Chemical , Geologic Sediments/analysis , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , China , Rivers/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Seawater/chemistry , Seawater/analysis
16.
J Biotechnol ; 381: 36-48, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38190850

ABSTRACT

Macrolactins are a type of compound with complex macrolide structure which mainly be obtained through microbiological fermentation now. They have excellent antifungal, antibacterial and antitumor activity. In order to improve macrolactins production, Bacillus siamensis YB304 was used as the research object, and a mutant Mut-K53 with stable genetic characters was selected by UV-ARTP compound mutagenesis. The yield of macrolactins was 156.46 mg/L, 3.95 times higher than original strain. The metabolic pathway changes and regulatory mechanism of macrolactins were analyzed by quantitative proteomics combined with parallel reaction monitoring. This study revealed that 1794 proteins were extracted from strain YB304 and strain Mut-K53, most of them were related to metabolism. After UV-ARTP compound mutagenesis treatment, the expression of 628 proteins were significantly changed, of which 299 proteins were significantly up-regulated. KEGG pathway analysis showed that differentially expression proteins mainly distributed in biological process, cellular component, and molecular function processing pathways. Such as utilization of carbon sources, glycolysis pathway, and amino acid metabolism pathway. Furthermore, key precursor substances such as acyl-CoA and amino acids of macrolactin biosynthesis are mostly up-regulated, which are one of the main reasons for increased production of macrolactin.This study will provide a new way to increase the yield of macrolactins through mutagenesis breeding and proteomics.


Subject(s)
Bacillus , Proteomics , Bacillus/genetics , Bacillus/chemistry , Mutagenesis , Macrolides
17.
Anim Genet ; 55(1): 168-172, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38093616

ABSTRACT

Milk production is one of the most important economic utility of goats. Guanzhong dairy goat is a local dairy goat in Shaanxi Province of China and has high milk yield and quality. However, there are relatively few studies on molecular markers of milk production traits in Guanzhong dairy goats. In this study, we sequenced the whole genomes of 20 Guanzhong dairy goats, 10 of which had high milk yield (HM) and 10 of which had low milk yield (LM). We detected candidate signatures of selection in HM goats using Fst and π-ratio statistics and identified several candidate genes including ANPEP, ADRA1A and PRKG1 associated with milk production. Our results provide the basis for molecular breeding of milk production traits in Guanzhong dairy goats.


Subject(s)
Genome , Milk , Animals , Phenotype , Sequence Analysis, DNA , Goats/genetics
18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013087

ABSTRACT

Objective@#To study the clinical effect of a polyetheretherketone (PEEK) bonding bridge on the loss of 3 internal incisors in patients with periodontitis.@*Methods@#This study was reviewed and approved by the ethics committee, and informed consent was obtained from the patients. Thirty-eight patients with periodontitis and 3 missing central or lateral teeth were selected to undergo restoration with a PEEK bonding bridge and then returned to the hospital 3, 6, 12, and 24 months after the restoration was completed. The survival rate of the restorations was assessed by the modified USPHS/Ryge criteria. The plaque index, gingival index, periodontal probing depth and attachment loss of the abutments were recorded, and the changes in periodontal tissues after restoration were observed and compared.@*Results@#Over 24 months of clinical follow-up observation of 38 patients, only 1 patient underwent secondary bonding after partial debonding (evaluated as grade B), while bonding was successful in the other 37 cases (evaluated as grade A). The plaque index, gingival index and periodontal probing depth were significantly lower after restoration than before (P<0.05). There was no significant change in attachment loss between before and after restoration (P>0.05).@*Conclusion@#For periodontitis patients missing 3 internal incisors, short-term PEEK bonding bridge repair has good clinical efficacy.

19.
Sci Total Environ ; 912: 169365, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38104823

ABSTRACT

The rapid development of nuclear energy in China has led to increased attention to the treatment of radioactive wastewaters. Herein, a novel magnetic adsorbent, magnetic Prussian blue­molybdenum disulfide (PB/Fe3O4/MoS2) nanocomposite, was prepared by a simple in-situ fixation of ferric oxide nanoparticles (Fe3O4 NPs) and Prussian Blue (PB) shell layers on the surface of molybdenum disulfide (MoS2) nanosheets carrier. The prepared PB/Fe3O4/MoS2 nanocomposites adsorbent displayed excellent fast magnetic separation and adsorption capacity of Cs+ (Qm = 80.51 mg/g) from water. The adsorption behavior of Cs+ by PB/Fe3O4/MoS2 conformed to Langmuir isothermal and second-order kinetic model, which belonged to chemical adsorption and endothermic reaction. The equilibrium adsorption capacity of PB/Fe3O4/MoS2 to Cs+ has reached 90 % in less than 110 min. Moreover, the adsorption properties of PB/Fe3O4/MoS2 remained good in the pH range of 2-7. Based on this, PB/Fe3O4/MoS2 complex was a fast and high selectivity adsorption material for Cs+, which was expected to be used in the practical treatment of cesium-containing radioactive wastewater.

20.
Funct Integr Genomics ; 24(1): 3, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38091112

ABSTRACT

N6-methyladenosine (m6A) methylation is an extensive posttranscriptional RNA modification, and it is associated with various cellular responses, especially in tumor progression. An m6A "reader"-HNRNPA2B1 has been found oncogenic in multiple malignancies. As a key proliferation-related transcription factor, forkhead box protein M1 (FOXM1) is involved in tumorigenesis. Here, we elucidated the underlying mechanism by which HNRNPA2B1-mediated modification of FOXM1 promotes endometrial cancer (EC). The GSE115810 dataset was used to analyze the upregulated gene mRNA in late-stage EC tissues. The expression levels of HNRNPA2B1, FOXM1, and LCN2 in EC samples were shown by western blotting and qPCR. The interaction among HNRNPA2B1, FOXM1, and LCN2 in EC cells was detected using bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down, RNA decay analysis, and luciferase reporter experiments. Cisplatin (DDP)-resistant EC cells were constructed using HEC-1-A and HEC-1-B cells, named HEC-1-A/DDP and HEC-1-B/DDP, respectively. Proliferation, migration, and invasiveness in treated HEC-1-A/DDP and HEC-1-B/DDP cells were detected by EdU, wound healing, and transwell assays. Ferroptosis-resistant gene expression, MDA level, and ROS level were measured. The m6A modification level in EC tissues was elevated. HNRNPA2B1 and FOXM1 levels were upregulated in EC. HNRNPA2B1 expression was positively related to FOXM1 expression in EC samples, and HNRNPA2B1 bound to the 3'UTR of FOXM1 and stabilized FOXM1 mRNA via m6A modification. FOXM1 positively regulated LCN2 expression in EC cells by binding to the LCN2 promotor. Knockdown of FOXM1 downregulated ferroptosis-resistant gene expression and increased MDA and ROS levels in DDP-resistant EC cells. Rescue assays revealed that LCN2 overexpression eliminated the effects mediated by FOXM1 knockdown on the proliferation, migration, invasiveness, and ferroptosis in DDP-resistant EC cells. In conclusion, HNRNPA2B1-mediated mA modification of FOXM1 facilitates drug resistance and inhibits ferroptosis in EC cells by upregulating LCN2 expression.


Subject(s)
Endometrial Neoplasms , Ferroptosis , Humans , Female , Cell Line, Tumor , Ferroptosis/genetics , Reactive Oxygen Species , Cell Proliferation/genetics , Drug Resistance, Neoplasm/genetics , RNA , Endometrial Neoplasms/genetics , RNA, Messenger , Lipocalin-2/pharmacology , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL