Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sports Med Open ; 10(1): 40, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625433

ABSTRACT

BACKGROUND: Esports is competitive video gaming, performed within teams or individually, across multiple genres. Players are required to be sedentary for extended periods and require a high-level of cognitive skills for successful competitive performance. There are conflicting findings within the physical activity research in the esports industry. The aim of this research is to explore self-reported physical activity through accelerometer-assessed physical activity, to gain a better insight into the physical activity behaviours of international e'athletes. METHOD: Participants (n = 796) across multiple popular esports games, holding any in-game rank, competing at any level, were recruited. The survey consisted of demographic details, esports experience, the International Physical Activity Questionnaire-Long Form (IPAQ-LF), and Behavioural Regulations towards Exercise Questionnaire (BREQ-3). Within a convenience sample, local intervarsity e'athletes (n = 18) were recruited to wear a wrist-worn accelerometer to measure physical activity for 7-days and then complete the survey. Results from the accelerometers were compared to the survey results to explore physical activity reporting within this population. RESULTS: When comparing IPAQ-LF to accelerometer data, players significantly over-report moderate-to-vigorous physical activity and weekly MET-min- 1 (p = .018, r = .63 and p ≤ .001, r = .92). The BREQ-3 showed that e'athletes categorised as high physical activity displayed significantly higher levels of intrinsic motivation, when compared to players categorised as low and moderate physical activity. CONCLUSIONS: E'athletes significantly over report physical activity time when measured through the IPAQ-LF, suggesting previous surveys may overestimate physical activity and further research is needed. Given the exponential growth of the industry and the level of physical inactivity, esports may contribute to global physical inactivity levels.

2.
Sports Med Open ; 10(1): 44, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630170

ABSTRACT

BACKGROUND: Research into esports suggests that e'athletes experience physiological stressors and demands during competition and training. The physiological demands of esports are poorly understood and need to be investigated further to inform future training guidelines, optimise performance outcomes, and manage e'athlete wellbeing. This research aimed to quantify the metabolic rate of esports gameplay and compare this outcome with heart rate variability within expert e'athletes. RESULTS: Thirteen healthy male participants ranked within the top 10% of their respective esports title participated in the study (age = 20.7 ± 2.69 years; BMI = 24.6 ± 5.89 kg·m- 2). Expired gas analysis indirect calorimetry measured gas exchange during rest and gaming. Compared to resting conditions, competitive esports gameplay significantly increased median energy expenditure (1.28 (IQR 1.16-1.49) kcal·min- 1 vs. 1.45 (IQR 1.20-1.77) kcal·min- 1, p = .02), oxygen consumption (0.27 (IQR 0.24-0.30) L·min- 1 vs. 0.29 (IQR 0.24-0.35) L·min- 1, p = .02) and carbon dioxide production (0.20 (IQR 0.19-0.27) L·min- 1vs. 0.27 (IQR 0.24-0.33) L·min- 1, p = .01). Competitive gameplay also resulted in a significant increase in heart rate (84.5 (IQR 74.1-96.1) bpm vs. 87.1 (IQR 80.3-104) bpm, p = .01) and decrease in R-R interval's (710 (IQR 624-810) ms vs. 689 (IQR 579-747) ms, p = .02) when compared to rest. However, there were no significant differences in time or frequency measures of heart rate variability. CONCLUSIONS: The data reveal increased physiological responses to metabolic rate, energy expenditure and cardiovascular function to esports game play within expert e'athletes. Further physiological research into the physical demands on e'athletes, the influence of different training programs to esport performance, and the added multivariate determinants to elite level esport performance are warranted.

3.
Article in English | MEDLINE | ID: mdl-35010566

ABSTRACT

Background: Research in sport, military, and aerospace populations has shown that mental fatigue may impair cognitive performance. The effect of nutritional interventions that may mitigate such negative effects has been investigated. This systematic review and meta-analysis aimed to quantify the effects of nutritional interventions on cognitive domains often measured in mental fatigue research. Methods: A systematic search for articles was conducted using key terms relevant to mental fatigue in sport, military, and aerospace populations. Two reviewers screened 11,495 abstracts and 125 full texts. A meta-analysis was conducted whereby effect sizes were calculated using subgroups for nutritional intervention and cognitive domains. Results: Fourteen studies were included in the meta-analysis. The consumption of energy drinks was found to have a small positive effect on reaction time, whilst the use of beta-alanine, carbohydrate, and caffeine had no effect. Carbohydrate and caffeine use had no effect on accuracy. Conclusions: The results of this meta-analysis suggest that consuming energy drinks may improve reaction time. The lack of effect observed for other nutritional interventions is likely due to differences in the type, timing, dosage, and form of administration. More rigorous randomized controlled trials related to the effect of nutrition interventions before, during, and after induced mental fatigue are required.


Subject(s)
Military Personnel , Sports , Caffeine , Humans , Mental Fatigue , Reaction Time
SELECTION OF CITATIONS
SEARCH DETAIL