Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 110(1): 354-364, 2021 01.
Article in English | MEDLINE | ID: mdl-32835702

ABSTRACT

The proton-coupled amino acid transporter, PAT1, is known to be responsible for intestinal absorption drug substances such as gaboxadol and vigabatrin. The aim of the present study was to investigate, if 17-α-ethinyl-estradiol (E-E2) and 17-ß-estradiol (E) inhibit PAT1-mediated intestinal absorption of proline and taurine in vitro in Caco-2 cells and in vivo using Sprague-Dawley rats to assess the potential for taurine-drug interactions. E and E-E2 inhibited the PAT1-mediated uptake of proline and taurine in Caco-2 cells with IC50 values of 10.0-50.0 µM without major effect on other solute carriers such as the taurine transporter (TauT), di/tri-peptide transporter (PEPT1), and serotonin transporter (SERT1). In PAT1-expressing oocytes E and E-E2 were non-translocated inhibitors. In Caco-2 cells, E and E-E2 lowered the maximal uptake capacity of PAT1 in a non-competitive manner. Likewise, the transepithelial permeability of proline and taurine was reduced in presence of E and E-E2. In male Sprague Dawley rats pre-dosed with E-E2 a decreased maximal plasma concentration (Cmax) of taurine and increased the time (tmax) to reach this was indicated, suggesting the possibility for an in vivo effect on the absorption of PAT1 substrates. In conclusion, 17-α-ethinyl-estradiol and 17-ß-estradiol were identified as non-translocated and non-competitive inhibitors of PAT1.


Subject(s)
Protons , Symporters , Amino Acid Transport Systems/metabolism , Animals , Biological Transport , Caco-2 Cells , Estradiol/pharmacology , Humans , Intestinal Absorption , Male , Rats , Rats, Sprague-Dawley , Symporters/metabolism
2.
J Med Chem ; 63(24): 15693-15708, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33325700

ABSTRACT

Conjugation of pleuromutilin is an attractive strategy for the development of novel antibiotics and the fight against multiresistant bacteria as the class is associated with low rates of resistance and cross-resistance development. Herein, the preparation of 35 novel (+)-pleuromutilin conjugates is reported. Their design was based on a synthetically more efficient benzyl adaption of a potent lead but still relied on the Cu(I)-catalyzed alkyne-azide [3 + 2] cycloaddition for conjugation onto pleuromutilin. Their antibacterial activity was evaluated against the multiresistant Staphylococcus aureus strain USA300 for which they displayed moderate to excellent activity. Compound 35, bearing a para-benzyladenine substituent, proved particularly potent against USA300 and additional strains of MRSA and displayed as importantly no cytotoxicity in four mammalian cell lines. Structure-activity relationship analysis revealed that the purine 6-amino is essential for high potency, likely because of strong hydrogen bonding with the RNA backbone of C2469, as suggested by a molecular model based on the MM-GBSA approach.


Subject(s)
Adenine/chemistry , Anti-Bacterial Agents/pharmacology , Diterpenes/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Polycyclic Compounds/chemistry , Triazoles/chemistry , Animals , Anti-Bacterial Agents/chemistry , Binding Sites , Catalysis , Cell Line , Cell Survival/drug effects , Copper/chemistry , Cycloaddition Reaction , Dogs , Humans , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Structure-Activity Relationship , Pleuromutilins
3.
Int J Pharm ; 565: 306-315, 2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31085259

ABSTRACT

The aim of the present study was to investigate the ability of non-ionic surfactants to inhibit MRP2-mediated transport in vitro in MDCKII MRP2 cells. Transport studies across MDCKII MRP2 cell monolayers were performed using 3H-etoposide and 3H-digoxin. 19 different non-ionic surfactants, including several polysorbates (PS), cremophor EL, vitamin E-TPGS, and n-nonyl ß-D-glucopyranoside (NG), were investigated. Barrier function of the cells was investigated measuring TEER and transport of 14C-glycine. The amount of isotope was quantified using liquid scintillation counting. In MDCKII MRP2 cells a polarized transport of etoposide and digoxin in the secretory (basolateral to apical) direction with efflux ratios of 5.5 ±â€¯0.7 and 18.5 ±â€¯4.2, respectively, was measured. P-gp inhibitors such as valspodar and zosuquidar did not affect etoposide transport, and furthermore PS20 decreased secretory transport of digoxin, but not of etoposide. Transport of etoposide was therefore mainly MRP2-mediated and used as a probe to investigate pharmaceutical excipients. Non-ionic surfactants did not modulate etoposide transport across intact cell monolayers of MRP2 overexpressing MDCKII cells, although preliminary studies suggest that most were able to alter MRP2-mediated efflux of the fluorescent 5-chloromethylfluorescein (CMF). In conclusion, etoposide transport across MDCKII MRP2 cells was modulated by cyclosporin A, an inhibitor of MRP2 and P-gp, but not by specific P-gp inhibitors (valspodar and zosuquidar), which suggests that etoposide transport is primarily influenced by MRP2. In addition, commonly used non-ionic surfactants did not decrease MRP2-mediated etoposide transport in MDCKII MRP2 cells. These results suggest that etoposide transport in MDCKII MRP2 cells is a model system to investigate MRP2 interactions, and that surfactants may not have a large potential for increasing oral bioavailability of drugs through inhibition of MRP2 transport activity.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Etoposide/administration & dosage , Multidrug Resistance-Associated Proteins/metabolism , Animals , Biological Transport , Cyclosporine/pharmacology , Dogs , Madin Darby Canine Kidney Cells , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/genetics , Surface-Active Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL