Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 261: 122061, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39002416

ABSTRACT

The quantification of the mass of meso/microplastic (MMP) particles is crucial for assessing the global inventory of ocean plastics and assessing environmental and human health risks. Herein, linear regression models between mass and projected surface area on a log scale were established by directly measuring the masses of 4390 MMP particles collected at 35 sites in 17 Japanese rivers with an ultramicrobalance. The linear regression models estimated mass concentrations more accurately than any previous method based on geometric volume assuming several three-dimensional shapes. Additionally, linear regression models were quite reasonable for determining the geometric relationships of idealized cuboid particles. The slope of the linear regression models was dependent on the three-dimensional shapes of the particles, and their intercept was determined according to their third dimension. Moreover, the third dimension led to uncertainty in the mass estimation of particles; thus, the accuracies of the previous methods were relatively poor. Nevertheless, two limitations for mass measurement by linear regression models were identified, which determined the size range of the MMP particles on the projected surface area (ranging from 10-4 mm2 to 102 mm2) that is applicable for mass estimation of the particles collected from riverine and marine environments. Our results could be used to accurately estimate the mass concentrations in aquatic environments and provide insights into the geometric relationships between the mass and size of MMP particles.

2.
Water Res ; 249: 120979, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38086208

ABSTRACT

While plastics are classified by size as microplastics (<5 mm), mesoplastics (5-25 mm), and macroplastics (>25 mm), research in rivers has centered on microplastics, followed by macroplastics, with limited research on mesoplastics (research gap). This study aims to clarify the concentration, shape, and polymer composition of microplastics and mesoplastics in Japanese river water. We conducted field surveys for microplastics and mesoplastics in 147 rivers and at 185 measurement stations. The novelty of this study is in the use of a large number of field data to minimize the effect of the spatial difference in the microplastics and mesoplastics on the data analysis. Microplastics and mesoplastics were found at 183 (99 %) and 136 (74 %) stations, respectively. The difference between the concentration of microplastics and mesoplastics increased significantly with the increase in the concentration of microplastics, showing that the concentration of both microplastics and mesoplastics should be monitored to prevent an underestimation of plastic pollution in rivers with the appropriate sampling. A 2-stage size classification with microplastics (<5 mm) and macroplastics (>5 mm) is not suitable because the mesoplastics may be substantially overlooked. The regression slopes between microplastics and mesoplastics concentrations significant decrease in variance with increasing data number, suggesting the necessity of the large number of samples used in this study. The predominant shapes and polymer types of microplastics and mesoplastics were found to be fragment and fiber and polyethylene and polyethylene terephthalate (PET), respectively, which were affected appreciably by many fiber clusters. The fiber and PET ratios were dominant at stations with small population densities and urban ratios and can be attributed to atmospheric deposition and the underdeveloped rate of wastewater treatment plants (WWTPs). Therefore, it is necessary to monitor the dynamics and fate of fiber clusters inside and outside the basin.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics/analysis , Polymers , Rivers , Japan , Water Pollutants, Chemical/analysis , Environmental Monitoring
3.
Environ Pollut ; 335: 122310, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37543067

ABSTRACT

Microplastics (MPs), plastic particles <5 mm in diameter, are emerging ubiquitous pollutants in natural environments, including freshwater ecosystems. As rivers facilitate efficient transport among landscapes, monitoring is crucial for elucidating the origin, dynamics, and fate of MPs. However, standardized methodologies for in situ sampling in freshwater environments remain undefined to date. Specifically, evaluating the sampling error of MP concentration estimates is crucial for comparing results among studies. This study proposes a novel method for computing confidence intervals (CIs) from a single estimate of numerical concentration (expressed in particles·m-3). MPs are expected to disperse according to purely random processes, such as turbulent diffusion, and to consequently exhibit a random distribution pattern that follows a Poisson point process. Accordingly, the present study introduced a framework based on the Poisson point process to compute CIs, which were validated using MP samples from two urban rivers in Chiba, Japan, obtained using a mesh with an opening size of 335 µm. Random number simulations revealed that the CIs were applicable when ≥10 MPs were present in a sample. Further, when ≥50 MPs were present in a sample, the sampling error (95% CI) was within ±30% of the concentration estimates. The proposed framework allows for the intercomparison of single river MP samples despite the lack of sample replicates. Further, the present study emphasizes that the volume of sampled river water is the only controllable parameter that can reduce the sampling error.


Subject(s)
Microplastics , Water Pollutants, Chemical , Rivers , Plastics , Ecosystem , Confidence Intervals , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
4.
Sci Total Environ ; 870: 161942, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36731551

ABSTRACT

Meso- and microplastics have been collected via net sampling in marine and freshwater environments, but the effect of net clogging on evaluations of their concentrations (mPC) remains uncertain. We experimentally investigated the mPC uncertainties resulting from net clogging in the Ohori and Tone-unga Rivers, typical urban rivers in Japan, throughout 16 samplings with five filtration durations in one day. The weighted mean concentration in the Ohori River was significantly lower than that in the Tone-unga River, allowing us to examine the effect of clogging in rivers with different contamination levels. The variances in both rivers consistently tended to increase with increasing filtration duration, which can be expressed by applying the integral form of the Weibull reliability function (WRF). Furthermore, application of the WRF successfully revealed the optimal filtration durations in the Ohori and Tone-unga Rivers, which depended on the plastic abundance and sample volume. Since it could be difficult to obtain the plastic contamination level in advance, our suggestion is to predict the time sustained above 85 % filtration efficiency by applying a WRF-based model. In actuality, the sustained time in the Ohori (Tone-unga) River varied between 2.6 and 6.2 min (3.2 and 7.1 min) throughout the experiment, which permitted low mPC uncertainties of 12 % and 9.5 %, respectively. If notable uncertainty exists due to a low contamination level, a net with a high open area ratio should be used to increase the filtration duration. Hence, our results emphasize the importance of considering the open area ratio of nets used for sampling in studies. Our study provides insights into the occurrence of uncertainty due to net clogging to establish a standardized methodology for meso- and microplastic monitoring in aquatic environments via net sampling and consequently contributes to improving the sampling accuracy.

5.
Environ Pollut ; 310: 119811, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35934151

ABSTRACT

Microplastics (MPs), plastic particles <5 mm in diameter, have become an emerging ubiquitous concern for the environment. Rivers are the primary pathways that transport MPs from the land to the ocean; however, standardized methodologies for in-situ sampling in freshwater environments remain undefined. Notably, uncertainties in MP sampling methods lead to errors in estimating MP discharge through rivers. In the present study, the inter-sample variance of plankton net-obtained MP concentrations for two urban rivers in Japan was investigated. Numerical concentrations, expressed in particles·m-3, revealed that variance s2 was proportional to the mean m of replicated estimates of numerical concentrations. A derived statistical model suggested that river MPs disperse according to purely random processes; that is, Poisson point processes. Accordingly, a method was established to project the "precision," the ratio of the standard error to m, of numerical concentrations based on the number of net sampling repetitions. It was found that the mean of two replicates maintained sufficient precision of <30% for conditions with high concentrations of ≥3 particles·m-3. Projected precisions under different levels of MP concentrations are also presented to help design future field campaigns.


Subject(s)
Rivers , Water Pollutants, Chemical , Environmental Monitoring , Microplastics , Plastics
6.
Sci Total Environ ; 790: 148231, 2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34380239

ABSTRACT

Studies have recently focused on microplastics (MPs) in tap and drinking water. Directly comparing the results of different studies is difficult owing to the use of various methodologies. In particular, a study of particles on a part of the filter to reduce the analysis time can lead to uncertainty regarding the number of MPs in tap water. In this study, the analysis of particles on the whole filtration area using a Fourier-transform infrared (FTIR) microscope was achieved in approximately 1 h using a filtration unit with a smaller filtration area (0.13 cm2) and a large-opening (26 µm) filter. Forty-two samples collected from five countries were analyzed using this method. The concentrations of the MPs at each site ranged from 1.9 to 225 particles L-1, with a mean concentration of all samples of 39 ± 44 particles L-1. The size ranged from 19.2 µm to 4.2 mm. Fragments were the predominant shape while fibers and spheres were also observed. Based on a combination of the shape, size, and chemical composition of the MPs, we discussed their sources. The MPs could have caused contamination after processing by a water treatment plant because we detected a significant number of polyester fibers > 100 µm, which were previously detected in the air, and PVC fragments > 50 µm, which are often used in water pipes. This study proposed technical improvements to the whole filtration area technique to detect MPs in tap water.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Drinking Water/analysis , Environmental Monitoring , Microplastics , Plastics , Water Pollutants, Chemical/analysis
7.
Sci Rep ; 10(1): 2198, 2020 02 10.
Article in English | MEDLINE | ID: mdl-32042032

ABSTRACT

A new algorithm has been developed to quantify floating macro-debris transport on river surfaces that consists of three fundamental techniques: (1) generating a difference image of the colour difference between the debris and surrounding water in the CIELuv colour space, (2) detecting the debris pixels from the difference image, and (3) calculating the debris area flux via the template matching method. Debris pixels were accurately detected from the images taken of the laboratory channel and river water surfaces and were consistent with those detected by visual observation. The area fluxes were statistically significantly correlated with the mass fluxes measured through debris collection. The mass fluxes calculated by multiplying the area fluxes with the debris mass per unit area (M/A) were significantly related to the flood rising stage flow rates and agreed with the mass fluxes measured through debris collection. In our algorithm, plastic mass fluxes can be estimated via calibration using the mass percentage of plastics to the total debris in target rivers. Quantifying riverine macro-plastic transport is essential to formulating countermeasures, mitigating adverse plastic pollution impacts and understanding global-scale riverine macro-plastic transport.

8.
Environ Pollut ; 244: 958-965, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30469290

ABSTRACT

The numerical and mass concentrations of microplastics collected at 36 sites on the surfaces of 29 Japanese rivers were mapped and compared with four basin characteristics (basin area, population density, and urban and agricultural ratios) and six water quality parameters (pH, biochemical oxygen demand (BOD), suspended solids (SS), dissolved oxygen (DO), total nitrogen (T-N), and total phosphorus (T-P)) in each river basin. Microplastics were found in 31 of the 36 sites, indicating that some plastics fragment into small pieces before reaching the ocean. The microplastic concentrations are significantly correlated with urbanisation and population density, indicating that the microplastic concentrations in the river depend on human activities in the river basin. Furthermore, we found a significant relationship between the numerical and mass concentrations and BOD, which is an environmental indicator of river pollution. This result demonstrates that microplastic pollution in river environments has progressed more in polluted rivers with poor water quality than in rivers with good water quality, leading to the conclusion that the sources and inflow processes of microplastics in river environments are similar to those of other pollutants. Our findings can help identify potential sources (i.e., point and non-point sources) of fragmented microplastics to improve waste management in Japan and model the transport fluxes of fragmented microplastics in Japanese rivers using water quality parameters and basin characteristics.


Subject(s)
Environmental Monitoring/methods , Plastics/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Humans , Japan , Nitrogen/analysis , Phosphorus/analysis , Urbanization , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL