Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Braz J Microbiol ; 55(1): 681-688, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38175356

ABSTRACT

Pork is one of the most commonly consumed meats, and its safety has always been a concern. Recently, safety incidents caused by chemical or biological contamination such as drug residues, heavy metals, and pathogenic microorganisms in pork have been reported, and the safety of pork is a cause for concern. Salmonella spp. is one of the important foodborne pathogens that threaten human health. Pork is a high-risk vector food for Salmonella spp. infection. The assessment of the safety risk of Salmonella spp. in pork is conducive to the prevention of related foodborne diseases. In this paper, risk assessment models for Salmonella spp. in meat were developed. The quantitative risk assessment model for Salmonella spp. based on the pork supply chain showed that the annual number of cases of salmonellosis due to pork consumption in China is approximately 27 per 10,000 males and 24 per 10,000 females. Sensitivity analysis showed that the main factors affecting the risk of Salmonella spp. in pork were the display temperature, display time, and Salmonella spp. contamination concentration in pork at the sale.


Subject(s)
Pork Meat , Red Meat , Salmonella Infections , Animals , Swine , Humans , Salmonella/genetics , Red Meat/microbiology , Pork Meat/analysis , Food Handling , Meat/microbiology , Risk Assessment , China/epidemiology , Food Microbiology , Food Contamination/analysis
3.
Braz J Microbiol ; 53(2): 547-556, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35143017

ABSTRACT

Previous studies have shown that the combination disinfectant, Ortho-phthalaldehyde and benzyldimethyldodecylammonium chloride (ODB), can effectively kill a variety of microorganisms, such as Escherichia coli, Staphylococcus aureus, and Candida albicans. To observe the sporicidal ability and mechanism of ODB for spores, Bacillus subtilis spores were used as the research object in this experiment. TEM images revealed that ODB destroyed the integrity of the coat, cortex, and inner membrane of the spores after 0.5-h treatment, and the nuclear material was also broken and exuded after 4-h treatment. The broken structure led to the release of dipicolinic acid (DPA) in large amount. The results show that B. subtilis spores can be effetely killed by ODB through destroying the structure of the spores.


Subject(s)
Bacillus subtilis , Disinfectants , Chlorides , Disinfectants/pharmacology , Escherichia coli , Spores , Spores, Bacterial , o-Phthalaldehyde
SELECTION OF CITATIONS
SEARCH DETAIL