Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Front Pharmacol ; 15: 1454523, 2024.
Article in English | MEDLINE | ID: mdl-39351092

ABSTRACT

Background: Overexpression of monopolar spindle 1 (MPS1) and histone deacetylase 8 (HDAC8) is associated with the proliferation of liver cancer cells, so simultaneous inhibition of both MPS1 and HDAC8 could offer a promising therapeutic approach for the treatment of liver cancer. Dual-targeted MPS1/HDAC8 inhibitors have not been reported. Methods: A combined approach of pharmacophore modeling and molecular docking was used to identify potent dual-target inhibitors of MPS1 and HDAC8. Enzyme inhibition assays were performed to evaluate the optimal compound with the strongest inhibitory activity against MPS1 and HDAC8. The selectivity of MPH-5 for MPS1 and HDAC8 was assessed on a panel of 68 kinases and other histone deacetylases. Subsequently, molecular dynamics (MD) simulation verified the binding stability of the optimal compound to MPS1 and HDAC8. Ultimately, in vitro cellular assays and in vivo antitumor assays evaluated the antitumor efficacy of the most promising compound for the treatment of hepatocellular carcinoma. Results: Six dual-target compounds (MPHs 1-6) of both MPS1 and HDAC8 were identified from the database using a combined virtual screening protocol. Notably, MPH-5 showed nanomolar inhibitory effect on both MPS1 (IC50 = 4.52 ± 0.21 nM) and HDAC8 (IC50 = 6.07 ± 0.37 nM). MD simulation indicated that MPH-5 stably binds to both MPS1 and HDAC8. Importantly, cellular assays revealed that MPH-5 exhibited significant antiproliferative activity against human liver cancer cells, especially HepG2 cells. Moreover, MPH-5 exhibited low toxicity and high efficacy against tumor cells, and it overcomes drug resistance to some extent. In addition, MPH-5 may exert its antitumor effects by downregulating MPS1-driven phosphorylation of histone H3 and upregulating HDAC8-mediated K62 acetylation of PKM2. Furthermore, MPH-5 showed potent inhibition of HepG2 xenograft tumor growth in mice with no apparent toxicity and presented favorable pharmacokinetics. Conclusion: The study suggests that MPH-5 is a potent, selective, high-efficacy, and low-toxicity antitumor candidate for the treatment of hepatocellular carcinoma.

2.
J Transl Med ; 22(1): 832, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256760

ABSTRACT

BACKGROUND: The roles of the transcriptional factor SIX2 have been identified in several tumors. However, its roles in gastric cancer (GC) progression have not yet been revealed. Our objective is to explore the impact and underlying mechanisms of SIX2 on the stemness of GC cells. METHODS: Lentivirus infection was employed to establish stable expression SIX2 or PFN2 in GC cells. Gain- and loss-of-function experiments were conducted to detect changes of stemness markers, flow cytometry profiles, tumor spheroid formation, and tumor-initiating ability. ChIP, RNA-sequencing, tissue microarray, and bioinformatics analysis were performed to reveal the correlation between SIX2 and PFN2. The mechanisms underlying the SIX2/PFN2 loop-mediated effects were elucidated through tissue microarray analysis, RNA stability assay, IP-MS, Co-Immunoprecipitation, and inhibition of the JNK signaling pathway. RESULTS: The stemness of GC cells was enhanced by SIX2. Mechanistically, SIX2 directly bound to PFN2's promoter and promoted PFN2 activity. PFN2, in turn, promoted the mRNA stability of SIX2 by recruiting RNA binding protein YBX-1, subsequently activating the downstream MAPK/JNK pathway. CONCLUSION: This study unveils the roles of SIX2 in governing GC cell stemness, defining a novel SIX2/PFN2 regulatory loop responsible for this regulation. This suggests the potential of targeting the SIX2/PFN2 loop for GC treatment (Graphical Abstracts).


Subject(s)
Feedback, Physiological , Gene Expression Regulation, Neoplastic , Homeodomain Proteins , Neoplastic Stem Cells , Profilins , Stomach Neoplasms , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Humans , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Profilins/metabolism , Profilins/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Animals , Promoter Regions, Genetic/genetics , RNA Stability/genetics , MAP Kinase Signaling System , Protein Binding
3.
Aging (Albany NY) ; 16(14): 11460-11474, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39033781

ABSTRACT

In recent years, the detection and analysis of circulating tumor DNA (ctDNA) have emerged as a new focus in the field of cancer research, particularly in the early diagnosis of hepatocellular carcinoma (HCC) and monitoring of therapeutic efficacy. ctDNA, which refers to cell-free DNA fragments released into the bloodstream from tumor cells upon cell death or shedding, carries tumor-specific genetic and epigenetic alterations, thereby providing a non-invasive approach for cancer diagnosis and prognosis. The concentration of ctDNA in the blood is higher compared to that in healthy individuals or other liquid biopsies from early-stage cancers, which is closely associated with the early diagnosis and comprehensive sequencing studies of HCC. Recent studies have indicated that sequential ctDNA analysis in patients receiving primary or adjuvant therapy for HCC can detect treatment resistance and recurrence before visible morphological changes in the tumor, making it a valuable basis for rapid adjustment of treatment strategies. However, this technology is continuously being optimized and improved. Challenges such as enhancing the accuracy of ctDNA sequencing tests, reducing the burden of high-throughput sequencing on a large number of samples, and controlling variables in the assessment of the relationship between ctDNA concentration and tumor burden, need to be addressed. Overall, despite the existing challenges, the examination and analysis of ctDNA have opened up new avenues for early diagnosis and therapeutic efficacy monitoring in hepatocellular carcinoma, expanding the horizons of this field.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Circulating Tumor DNA , Early Detection of Cancer , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/genetics , Liver Neoplasms/diagnosis , Liver Neoplasms/blood , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Early Detection of Cancer/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , DNA Mutational Analysis/methods , Mutation , Liquid Biopsy/methods
4.
Biomed Pharmacother ; 177: 116839, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38889633

ABSTRACT

Dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) and histone deacetylase 8 (HDAC8) have been shown to be associated with the development of several cancers. Here, we identified a dual-target DYRK2/HDAC8 inhibitor (DYC-1) through a combined virtual screening protocol. DYC-1 exhibited nanomolar inhibitory activity against both DYRK2 (IC50 = 5.27 ± 0.13 nM) and HDAC8 (IC50 = 8.06 ± 0.47 nM). Molecular dynamics simulations showed that DYC-1 had positive binding stability with DYRK2 and HDAC8. Importantly, the cytotoxicity assay indicated that DYC-1 exhibited superior antiproliferative activity against human liver cancer, especially SK-HEP-1 cells, and had no significant inhibition on normal liver cells. Moreover, DYC-1 showed a strong inhibitory effect on the growth of SK-HEP-1 xenograft tumors with no significant side effects. These data suggest that DYC-1 is a high-efficacy and low-toxic antitumor agent for the treatment of hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular , Dyrk Kinases , Histone Deacetylases , Liver Neoplasms , Mice, Nude , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Repressor Proteins , Xenograft Model Antitumor Assays , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Animals , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Histone Deacetylases/metabolism , Cell Line, Tumor , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/therapeutic use , Cell Proliferation/drug effects , Mice, Inbred BALB C , Molecular Docking Simulation , Mice , Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Drug Discovery , Molecular Dynamics Simulation
5.
Animal Model Exp Med ; 7(4): 419-432, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38923366

ABSTRACT

BACKGROUND: To explore potential biomarkers for early diagnosis of atherosclerosis (AS) and provide basic data for further research on AS, the characteristics of serum metabolomics during the progression of AS in mini-pigs were observed dynamically. METHODS: An AS model in Bama miniature pigs was established by a high-cholesterol and high-fat diet. Fasting serum samples were collected monthly for metabolomics and serum lipid detection. At the end of the treatment period, pathological analysis of the abdominal aorta and coronary artery was performed to evaluate the lesions of AS, thereby distinguishing the susceptibility of mini-pigs to AS. The metabolomics was detected using a high-resolution untargeted metabolomic approach. Statistical analysis was used to identify metabolites associated with AS susceptibility. RESULTS: Based on pathological analysis, mini-pigs were divided into two groups: a susceptible group (n = 3) and a non-susceptible group (n = 6). A total of 1318 metabolites were identified, with significant shifting of metabolic profiles over time in both groups. Dynamic monitoring analysis highlighted 57 metabolites that exhibited an obvious trend of differential changes between two groups with the advance of time. The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis indicated significant disorders in cholesterol metabolism, primary bile acid metabolism, histidine metabolism, as well as taurine and hypotaurine metabolism. CONCLUSIONS: During the progression of AS in mini-pigs induced by high-cholesterol/high-fat diet, the alterations in serum metabolic profile exhibited a time-dependent pattern, accompanied by notable disturbances in lipid metabolism, cholesterol metabolism, and amino acid metabolism. These metabolites may become potential biomarkers for early diagnosis of AS.


Subject(s)
Atherosclerosis , Diet, High-Fat , Disease Progression , Metabolomics , Swine, Miniature , Animals , Swine , Atherosclerosis/metabolism , Male , Biomarkers/blood , Disease Models, Animal , Metabolome
6.
Animal Model Exp Med ; 7(3): 377-387, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720469

ABSTRACT

BACKGROUND: Atherosclerosis is a chronic cardiovascular disease of great concern. However, it is difficult to establish a direct connection between conventional small animal models and clinical practice. The pig's genome, physiology, and anatomy reflect human biology better than other laboratory animals, which is crucial for studying the pathogenesis of atherosclerosis. METHODS: We used whole-genome sequencing data from nine Bama minipigs to perform a genome-wide linkage analysis, and further used bioinformatic tools to filter and identify underlying candidate genes. Candidate gene function prediction was performed using the online prediction tool STRING 12.0. Immunohistochemistry and immunofluorescence were used to detect the expression of proteins encoded by candidate genes. RESULTS: We mapped differential single nucleotide polymorphisms (SNPs) to genes and obtained a total of 102 differential genes, then we used GO and KEGG pathway enrichment analysis to identify four candidate genes, including SLA-1, SLA-2, SLA-3, and TAP2. nsSNPs cause changes in the primary and tertiary structures of SLA-I and TAP2 proteins, the primary structures of these two proteins have undergone amino acid changes, and the tertiary structures also show slight changes. In addition, immunohistochemistry and immunofluorescence results showed that the expression changes of TAP2 protein in coronary arteries showed a trend of increasing from the middle layer to the inner layer. CONCLUSIONS: We have identified SLA-I and TAP2 as potential susceptibility genes of atherosclerosis, highlighting the importance of antigen processing and immune response in atherogenesis.


Subject(s)
Atherosclerosis , Polymorphism, Single Nucleotide , Swine, Miniature , Animals , Swine , Atherosclerosis/genetics , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Swine Diseases/genetics , Swine Diseases/pathology , Genetic Predisposition to Disease , Male , Antigens, CD/genetics , Antigens, CD/metabolism
7.
J Med Chem ; 67(9): 7130-7145, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38630077

ABSTRACT

Multitarget medications represent an appealing therapy against the disease with multifactorial abnormalities─cancer. Therefore, simultaneously targeting son of sevenless 1 (SOS1) and epidermal growth factor receptor (EGFR), two aberrantly expressed proteins crucial for the oncogenesis and progression of prostate cancer, may achieve active antitumor effects. Here, we discovered dual SOS1/EGFR-targeting compounds via pharmacophore-based docking screening. The most prominent compound SE-9 exhibited nanomolar inhibition activity against both SOS1 and EGFR and efficiently suppressed the phosphorylation of ERK and AKT in prostate cancer cells PC-3. Cellular assays also revealed that SE-9 displayed strong antiproliferative activities through diverse mechanisms, such as induction of cell apoptosis and G1 phase cell cycle arrest, as well as reduction of angiogenesis and migration. Further in vivo findings showed that SE-9 potently inhibited tumor growth in PC-3 xenografts without obvious toxicity. Overall, SE-9 is a novel dual-targeting SOS1/EGFR inhibitor that represents a promising treatment strategy for prostate cancer.


Subject(s)
Antineoplastic Agents , Cell Proliferation , ErbB Receptors , Prostatic Neoplasms , SOS1 Protein , Male , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , SOS1 Protein/antagonists & inhibitors , SOS1 Protein/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects , Cell Line, Tumor , Mice , Apoptosis/drug effects , Drug Discovery , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/therapeutic use , Mice, Nude , Structure-Activity Relationship , Xenograft Model Antitumor Assays , Mice, Inbred BALB C
8.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396759

ABSTRACT

Caragana, a xerophytic shrub genus widely distributed in northern China, exhibits distinctive geographical substitution patterns and ecological adaptation diversity. This study employed transcriptome sequencing technology to investigate 12 Caragana species, aiming to explore genic-SSR variations in the Caragana transcriptome and identify their role as a driving force for environmental adaptation within the genus. A total of 3666 polymorphic genic-SSRs were identified across different species. The impact of these variations on the expression of related genes was analyzed, revealing a significant linear correlation (p < 0.05) between the length variation of 264 polymorphic genic-SSRs and the expression of associated genes. Additionally, 2424 polymorphic genic-SSRs were located in differentially expressed genes among Caragana species. Through weighted gene co-expression network analysis, the expressions of these genes were correlated with 19 climatic factors and 16 plant functional traits in various habitats. This approach facilitated the identification of biological processes associated with habitat adaptations in the studied Caragana species. Fifty-five core genes related to functional traits and climatic factors were identified, including various transcription factors such as MYB, TCP, ARF, and structural proteins like HSP90, elongation factor TS, and HECT. The roles of these genes in the ecological adaptation diversity of Caragana were discussed. Our study identified specific genomic components and genes in Caragana plants responsive to heterogeneous habitats. The results contribute to advancements in the molecular understanding of their ecological adaptation, lay a foundation for the conservation and development of Caragana germplasm resources, and provide a scientific basis for plant adaptation to global climate change.


Subject(s)
Caragana , Caragana/genetics , Gene Expression Profiling/methods , Transcriptome , Genes, Plant , Phenotype , Microsatellite Repeats
9.
Plant Genome ; 17(1): e20303, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36740755

ABSTRACT

Genetic diversity reflects the survival potential, history, and population dynamics of an organism. It underlies the adaptive potential of populations and their response to environmental change. Reaumuria trigyna is an endemic species in the Eastern Alxa and West Ordos desert regions in China. The species has been considered a good candidate to explore the unique survival strategies of plants that inhabit this area. In this study, we performed population genomic analyses based on restriction-site associated DNA sequencing to understand the genetic diversity, population genetic structure, and differentiation of the species. Analyses of 92,719 high-quality single-nucleotide polymorphisms (SNPs) indicated that overall genetic diversity of R. trigyna was low (HO = 0.249 and HE = 0.208). No significant genetic differentiation was observed among the investigated populations. However, a subtle population genetic structure was detected. We suggest that this might be explained by adaptive diversification reinforced by the geographical isolation of populations. Overall, 3513 outlier SNPs were located in 243 gene-coding sequences in the R. trigyna transcriptome. Potential sites under diversifying selection occurred in genes (e.g., AP2/EREBP, E3 ubiquitin-protein ligase, FLS, and 4CL) related to phytohormone regulation and synthesis of secondary metabolites which have roles in adaptation of species. Our genetic analyses provide scientific criteria for evaluating the evolutionary capacity of R. trigyna and the discovery of unique adaptions. Our findings extend knowledge of refugia, environmental adaption, and evolution of germplasm resources that survive in the Ordos area.


Subject(s)
Genomics , Metagenomics , Sequence Analysis, DNA , China
10.
J Enzyme Inhib Med Chem ; 39(1): 2295241, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38134358

ABSTRACT

Colorectal cancer (CRC) is one of the most common cancers worldwide. Nowadays, owing to the complex mechanism of tumorigenesis, simultaneous inhibition of multiple targets is an important anticancer strategy. Recent studies have demonstrated receptor tyrosine kinase AXL (AXL) and histone deacetylase 2 (HDAC2) are closely associated with colorectal cancer. Herein, we identified five hit compounds concurrently targeting AXL and HDAC2 using virtual screening. Inhibitory experiments revealed these hit compounds potently inhibited AXL and HDAC2 in the nanomolar range. Among them, Hit-3 showed the strongest inhibitory effects which were better than that of the positive control groups. Additionally, MD assays showed that Hit-3 could bind stably to the AXL and HDAC2 active pockets. Further MTT assays demonstrated that Hit-3 showed potent anti-proliferative activity. Most importantly, Hit-3 exhibited significant in vivo antitumor efficacy in xenograft models. Collectively, this study is the first discovery of dual-targeting AXL/HDAC2 inhibitors for colorectal cancer treatment.


Subject(s)
Colorectal Neoplasms , Molecular Dynamics Simulation , Humans , Molecular Docking Simulation , Pharmacophore , Histone Deacetylase 2/metabolism , Histone Deacetylase Inhibitors/pharmacology , Early Detection of Cancer , Colorectal Neoplasms/drug therapy
11.
J Enzyme Inhib Med Chem ; 39(1): 2289355, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38059332

ABSTRACT

Liver cancer exhibits a high degree of heterogeneity and involves intricate mechanisms. Recent research has revealed the significant role of histone lysine methylation and acetylation in the epigenetic regulation of liver cancer development. In this study, five inhibitors capable of targeting both histone lysine methyltransferase nuclear receptor-binding SET domain 2 (NSD2) and histone deacetylase 2 (HDAC2) were identified using a structure-based virtual screening approach. Notably, DT-NH-1 displayed a potent inhibition of NSD2 (IC50 = 0.08 ± 0.03 µM) and HDAC2 (IC50 = 5.24 ± 0.87 nM). DT-NH-1 also demonstrated a strong anti-proliferative activity against various liver cancer cell lines, particularly HepG2 cells, and exhibited a high level of biological safety. In an experimental xenograft model involving HepG2 cells, DT-NH-1 showed a significant reduction in tumour growth. Consequently, these findings indicate that DT-NH-1 will be a promising lead compound for the treatment of liver cancer with epigenetic dual-target inhibitors.


Subject(s)
Liver Neoplasms , Molecular Dynamics Simulation , Humans , Epigenesis, Genetic , Histone Deacetylase 2/metabolism , Early Detection of Cancer , Liver Neoplasms/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry
12.
Eur J Med Chem ; 263: 115908, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37981444

ABSTRACT

The efficacy of approved vaccines has been diminishing due to the increasing advent of SARS-CoV-2 variants with diverse mutations that favor sneak entry. Nonetheless, these variants recognize the conservative host receptors angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1) for entry, rendering the dual blockade of ACE2 and NRP1 an advantageous pan-inhibition strategy. Here, we identified a highly potent dual-targeting peptide AP-1 using structure-based virtual screening protocol. AP-1 had nanoscale binding affinities for ACE2 (Kd = 6.1 ± 0.2 nM) and NRP1 (Kd = 13.4 ± 1.2 nM) and approximately 102- and 8-fold stronger than positive inhibitors S471-503 and NMTP-5, respectively. Further evidence in pseudovirus cell infection and cytotoxicity assays demonstrated that AP-1 exhibited remarkable entry inhibition of variants of concern (VOCs) of SARS-CoV-2 without impairing host cell viability. Together, our findings suggest that AP-1 with dual-targeting ACE2/NRP1 efficacy could be a promising broad-spectrum agent for treating SARS-CoV-2 emerging VOCs.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2 , Neuropilin-1/metabolism , Transcription Factor AP-1/metabolism , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Peptides/metabolism
13.
J Med Chem ; 66(23): 16187-16200, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38093696

ABSTRACT

Dual inhibition of tubulin and neuropilin-1 (NRP1) may become an effective method for cancer treatment by simultaneously killing tumor cells and inhibiting tumor angiogenesis. Herein, we identified dual tubulin/NRP1-targeting inhibitor TN-2, which exhibited good inhibitory activity against both tubulin polymerization (IC50 = 0.71 ± 0.03 µM) and NRP1 (IC50 = 0.85 ± 0.04 µM). Importantly, it significantly inhibited the viability of several human prostate tumor cell lines. Further mechanism studies indicated that TN-2 could inhibit tubulin polymerization and cause G2/M arrest, thereby inducing cell apoptosis. It could also suppress cell tube formation, migration, and invasion. Moreover, TN-2 showed obvious antitumor effects on the PC-3 cell-derived xenograft model with negligible side effects and good pharmacokinetic profiles. These data demonstrate that TN-2 could be a promising dual-target chemotherapeutic agent for the treatment of prostate cancer.


Subject(s)
Antineoplastic Agents , Tubulin , Humans , Cell Line, Tumor , Tubulin/metabolism , Neuropilin-1 , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Apoptosis , Pharmacophore , Cell Proliferation , G2 Phase Cell Cycle Checkpoints , Tubulin Modulators/pharmacology , Tubulin Modulators/therapeutic use , Tubulin Modulators/chemistry , Polymerization , Structure-Activity Relationship
14.
J Enzyme Inhib Med Chem ; 38(1): 2241118, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37528657

ABSTRACT

Prostate cancer (PCa) is a clinically heterogeneous disease with a progressively increasing incidence. Concurrent inhibition of coactivator-associated arginine methyltransferase 1 (CARM1) and histone deacetylase 2 (HDAC2) could potentially be a novel strategy against PCa. Herein, we identified seven compounds simultaneously targeting CARM1 and HDAC2 through structure-based virtual screening. These compounds possessed potent inhibitory activities at the nanomolar level in vitro. Among them, CH-1 was the most active inhibitor which exhibited excellent and balanced inhibitory effects against both CARM1 (IC50 = 3.71 ± 0.11 nM) and HDAC2 (IC50 = 4.07 ± 0.25 nM). MD simulations presented that CH-1 could stably bind the active pockets of CARM1 and HDAC2. Notably, CH-1 exhibited strong anti-proliferative activity against multiple prostate-related tumour cells (IC50 < 1 µM). In vivo, assessment indicated that CH-1 significantly inhibited tumour growth in a DU145 xenograft model. Collectively, CH-1 could be a promising drug candidate for PCa treatment.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms , Male , Humans , Histone Deacetylase 2/metabolism , Antineoplastic Agents/pharmacology , Protein-Arginine N-Methyltransferases/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Histone Deacetylase Inhibitors/pharmacology
15.
Front Pharmacol ; 14: 1208740, 2023.
Article in English | MEDLINE | ID: mdl-37492092

ABSTRACT

Cancer is one of the important factors threatening human health. Hence, it is essential to create novel potent drugs to treat it. Due to the strong correlation among histone deacetylase1 (HDAC1), speckle-type POZ protein (SPOP) and cancers, dual inhibition of HDAC1 and SPOP may be a promising strategy for cancer treatment. In this study, we successfully identified four potential dual-targeting HDAC1/SPOP candidate compounds with structure-based virtual screening. In vitro inhibition experiments confirmed that the four compounds had dual inhibitory effects on HDAC1 and SPOP. Among them, compound HS-2 had a stronger inhibitory effect on HDAC1 and SPOP than the positive controls. Further molecular dynamics simulations indicated that HS-2 could stably bind to HDAC1 and SPOP. In addition, MTT assay indicated that HS-2 inhibited the growth of tumor cells in the micromolar range. In vivo evaluation showed that HS-2 could obviously inhibit the growth of tumor in nude mice without obvious toxicity. These findings suggest that HS-2 is a novel and potent dual-targeting HDAC1/SPOP inhibitor for cancer treatment.

16.
J Enzyme Inhib Med Chem ; 38(1): 2220558, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37357755

ABSTRACT

Heat shock protein 90 (Hsp90) is considered an attractive therapeutic target for cancer treatment due to its high expression in many cancers. In this study, four potent Hsp90 inhibitors (HPs 1-4) were identified using structure-based virtual screening. Among them, HP-4 exhibited the most potent inhibitory effects (IC50 = 17.64 ± 1.45 nM) against the Hsp90 protein, which was about 7.7 times stronger than that of MPC-3100 (a positive inhibitor targeting Hsp90). In vitro cytotoxicity assay suggested that HP-4 could effectively inhibit the proliferation of a series of tumour cells, including HCT-116, HeLa, A549, A2780, DU145, HepG2 and A498. Furthermore, in vivo assay displayed that HP-4 had significant anti-tumour effects on HCT-116 cell-derived xenograft models. These data demonstrate that HP-4 could be a potential lead compound for the further investigation of anti-tumour drugs.


Subject(s)
Drug Discovery , HSP90 Heat-Shock Proteins , Cell Line, Tumor , Drug Evaluation, Preclinical/methods , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Pharmacophore , Humans , Animals , Mice
17.
J Autoimmun ; 138: 103035, 2023 07.
Article in English | MEDLINE | ID: mdl-37216868

ABSTRACT

BACKGROUND: Transcriptome-wide aberrant RNA editing has been shown to contribute to autoimmune diseases, but its extent and significance in primary Sjögren's syndrome (pSS) are currently poorly understood. METHODS: We systematically characterized the global pattern and clinical relevance of RNA editing in pSS by performing large-scale RNA sequencing of minor salivary gland tissues obtained from 439 pSS patients and 130 non-pSS or healthy controls. FINDINGS: Compared with controls, pSS patients displayed increased global RNA-editing levels, which were significantly correlated and clinically relevant to various immune features in pSS. The elevated editing levels were likely explained by significantly increased expression of adenosine deaminase acting on RNA 1 (ADAR1) p150 in pSS, which was associated with disease features. In addition, genome-wide differential RNA editing (DRE) analysis between pSS and non-pSS showed that most (249/284) DRE sites were hyper-edited in pSS, especially the top 10 DRE sites dominated by hyper-edited sites and assigned to nine unique genes involved in the inflammatory response or immune system. Interestingly, among all DRE sites, six RNA editing sites were only detected in pSS and resided in three unique genes (NLRC5, IKZF3 and JAK3). Furthermore, these six specific DRE sites with significant clinical relevance in pSS showed a strong capacity to distinguish between pSS and non-pSS, reflecting powerful diagnostic efficacy and accuracy. CONCLUSION: These findings reveal the potential role of RNA editing in contributing to the risk of pSS and further highlight the important prognostic value and diagnostic potential of RNA editing in pSS.


Subject(s)
Sjogren's Syndrome , Humans , Sjogren's Syndrome/diagnosis , Sjogren's Syndrome/genetics , RNA Editing , Biomarkers/metabolism , Salivary Glands, Minor , RNA , Intracellular Signaling Peptides and Proteins/genetics
18.
J Colloid Interface Sci ; 645: 639-653, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37167913

ABSTRACT

Semiconductor photocatalysis was a rising star in the sustainable transformation of solar energy for environmental problems governance. Herein, an S-scheme g-C3N4/H2Ti3O7 heterostructure was constructed and applied to tetracycline hydrochloride (TCH) destruction. The g-C3N4/H2Ti3O7 composite has a superior photocatalytic property to degrade TCH in contrast with bare g-C3N4 and H2Ti3O7. The 20% g-C3N4/H2Ti3O7 (CNHTO20) composite exhibited the optimum photocatalytic performance, and the degradation efficiency of 20 mg/L TCH reached 87.37% within 3 h (K = 0.572 min-1). The affluent active sites of the g-C3N4 nanosheet and effective interfacial charge separation of the S-scheme pathway facilitated the excellent performance. Moreover, the ample oxygen vacancies (Ovs) act as the electron mediator, not only reducing the band gap energy by producing the formation of defect levels, but also broadening the photo response range and promoting the interfacial charge transfer. The coordination complexes formed between TCH molecules and Ti (IV) ions in CNHTO20 composites induce strong visible light absorption through ligand-metal charge transfer (LMCT). The Ti4+/Ti3+ metal cycle in CNHTO20 was conducive to the separation of the photogenerated electron-hole pairs on the heterojunction interface as well. The ESR characterization and trapping experiments certified that the dominant substances were OH, O2- and h+. The AQY calculated by the COD removal rate was 0.16%. Conclusively, the S-scheme heterojunction between H2Ti3O7 and g-C3N4 enabled the CNHTO photocatalyst with high redox ability and boosted photocatalytic performance accordingly. This study may shed some enlightenment on the construction of heterojunctions and the realistic treatment of wastewater.

19.
J Enzyme Inhib Med Chem ; 38(1): 2212327, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37194732

ABSTRACT

Both receptor-binding domain in spike protein (S-RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human neuropilin-1 (NRP1) are important in the virus entry, and their concomitant inhibition may become a potential strategy against the SARS-CoV-2 infection. Herein, five novel dual S-RBD/NRP1-targeting peptides with nanomolar binding affinities were identified by structure-based virtual screening. Particularly, RN-4 was found to be the most promising peptide targeting S-RBD (Kd = 7.4 ± 0.5 nM) and NRP1-BD (the b1 domain of NRP1) (Kd = 16.1 ± 1.1 nM) proteins. Further evidence in the pseudovirus infection assay showed that RN-4 can significantly inhibit the SARS-CoV-2 pseudovirus entry into 293 T cells (EC50 = 0.39 ± 0.09 µM) without detectable side effects. These results suggest that RN-4, a novel dual S-RBD/NRP1-targeting agent, holds potential as an effective therapeutic to combat the SARS-CoV-2 infection.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Humans , SARS-CoV-2 , Neuropilin-1 , Peptides/pharmacology , Protein Binding
20.
Animal Model Exp Med ; 6(4): 283-293, 2023 08.
Article in English | MEDLINE | ID: mdl-37132291

ABSTRACT

BACKGROUND: Hundreds of single-nucleotide polymorphism (SNP) sites have been found to be potential genetic markers of type 2 diabetes mellitus (T2DM). However, SNPs related to T2DM in minipigs have been less reported. This study aimed to screen the T2DM-susceptible candidate SNP loci in Bama minipigs so as to improve the success rate of the minipig T2DM model. METHODS: The genomic DNAs of three Bama minipigs with T2DM, six sibling low-susceptibility minipigs with T2DM, and three normal control minipigs were compared by whole-genome sequencing. The T2DM Bama minipig-specific loci were obtained, and their functions were annotated. Meanwhile, the Biomart software was used to perform homology alignment with T2DM-related loci obtained from the human genome-wide association study to screen candidate SNP markers for T2DM in Bama miniature pigs. RESULTS: Whole-genome resequencing detected 6960 specific loci in the minipigs with T2DM, and 13 loci corresponding to 9 diabetes-related genes were selected. Further, a set of 122 specific loci in 69 orthologous genes of human T2DM candidate genes were obtained in the pigs. Collectively, a batch of T2DM-susceptible candidate SNP markers in Bama minipigs, covering 16 genes and 135 loci, was established. CONCLUSIONS: Whole-genome sequencing and comparative genomics analysis of the orthologous genes in pigs that corresponded to the human T2DM-related variant loci successfully screened out T2DM-susceptible candidate markers in Bama miniature pigs. Using these loci to predict the susceptibility of the pigs before constructing an animal model of T2DM may help to establish an ideal animal model.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Swine , Animals , Swine, Miniature/genetics , Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Whole Genome Sequencing , Sequence Analysis, DNA , Disease Susceptibility
SELECTION OF CITATIONS
SEARCH DETAIL