Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Br J Radiol ; 88(1045): 20140363, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25382164

ABSTRACT

OBJECTIVE: To commission a grid block for spatially fractionated grid radiation therapy (SFGRT) treatments and describe its clinical implementation and verification through the record and verify (R&V) system. METHODS: SFGRT was developed as a treatment modality for bulky tumours that cannot be easily controlled with conventionally fractionated radiation. Treatment is delivered in the form of open-closed areas. Currently, SFGRT is performed by either using a commercially available grid block or a multileaf collimator (MLC) of a linear accelerator. In this work, 6-MV photon beam was used to study dosimetric characteristics of the grid block. We inserted the grid block into a commercially available treatment planning system (TPS), and the feasibility of delivering such treatment plans on a linear accelerator using a R&V system was verified. Dose measurements were performed using a miniature PinPoint(TM) ion chamber (PTW, Freiburg, Germany) in a water phantom and radiochromic film within solid water slabs. PinPoint ion chamber was used to measure the output factors, percentage depth dose (PDD) curves and beam profiles at two depths, depth of maximum dose (zmax) and 10 cm. Film sheets were used to measure dose profiles at zmax and 10-cm depth. RESULTS: The largest observed percentage difference between output factors for the grid block technique calculated by the TPS and measured with the PinPoint ion chamber was 3.6% for the 5 × 5-cm(2) field size. Relatively significant discrepancies between measured and calculated PDD values appear only in the build-up region, which was found to amount to <4%, while a good agreement (differences <2%) at depths beyond zmax was observed. Dose verification comparisons performed between calculated and measured dose distributions were in clinically acceptable agreements. When comparing the MLC-based with the grid block technique, the advantage of treating large tumours with a single field reduces treatment time by at least 3-5 times, having significant impact on patient throughput. CONCLUSION: The proposed method supports and helps to standardize the clinical implementation of the grid block in a safer and more accurate way. ADVANCES IN KNOWLEDGE: This work describes the method to implement treatment planning for the grid block technique in radiotherapy departments.


Subject(s)
Neoplasms/radiotherapy , Phantoms, Imaging , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Humans , Treatment Outcome
2.
Phys Med Biol ; 58(10): 3177-89, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23603810

ABSTRACT

Delivering accurate radiation dose to blood specimens during biological irradiations is essential in quantifying damage of ionizing radiation. To estimate dose to blood samples as accurately as possible, pieces of EBT2 model GAFCHROMIC™ film were placed within an approximately 10 mm finely ground rice layer that was used to simulate test specimens inside 40 mL plastic flasks. Irradiations of flasks were carried out using an X-RAD 320 irradiator with a beam quality of 320 kVp and a measured half value layer of 1.12 mm Cu, in air and in a full scattering setup which consisted of either rice or Solid Water™ (SW) surrounding flasks, filled to the same level at top of the flasks, together with a 5 cm thick SW slab beneath them. Outputs, per cent depth doses and beam profiles at different depths were measured and compared between setups. For the same setting, the dose delivered to the middle flask under the full scattering setup is 22% larger than with the in-air setup at the depth of the specimen and 9.2% more homogeneous across the specimen thickness of 10 mm (2.3% variation in comparison to the surface). Rice showed a fairly similar performance to SW within 1% at the same depth of 10 mm. Experimental setup based on full scattering conditions was shown to provide faster, more homogenous and fairly uniform dose delivery to biological specimens in comparison to conventionally used in-air setups.


Subject(s)
Film Dosimetry/methods , Radiation Dosage
3.
Med Phys ; 39(6Part16): 3794, 2012 Jun.
Article in English | MEDLINE | ID: mdl-28517198

ABSTRACT

PURPOSE: To provide a confidence level within our clinic relating to the implementation and administration of RapidArc, the AAPM TG1 19 has been implemented. This task group provides a sound and relatively simple methodology for determining the accuracy of the overall IMRT process administered in the day-to-day clinicMethods: Six different test plans, of varying complexity, were created on mock structure sets, downloaded from AAPM, and delivered. The treatment planning system results were then compared with the delivered results. Plans were created and delivered on a solid water phantom, using 25×25cm water equivalent slabs of varying thicknesses. Delivered point and planar dose measurements were obtained using an ionization chamber and film, respectively. RESULTS: The confidence limit (CL), averaged for all test plans, was calculated for the high dose point in the PTV and for the low dose point in the avoidance structure. This was used as an indicator of the uncertainty of the average difference between measured and planned dose. Where the precision of the delivery is based on how small the CL value is.For both the high and low dose points, the local CL's were determined to be 0.036 and 0.011, respectively. The range of results for the CL presented in TG1 19 varies from 0.015 to 0.098 for the high dose point, and from 0.014 to 0.086 for the low dose point. CONCLUSIONS: Our results indicate the accurate implementation of RapidArc within our clinic, especially when compared to the results of other institutions, published in TG1 19. Furthermore, the CL value for the low dose measurements is lower than any of the results published in TG119. We recommend that any clinic conducting IMRT should implement this task group. This will not only provide a greater understanding of the delivery and its limitations, but will also give the overall accuracy and consistency of the technique as it applies to the various treatment sites.

SELECTION OF CITATIONS
SEARCH DETAIL