Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Arch Virol ; 167(12): 2743-2747, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36129527

ABSTRACT

Passiflora virus Y was detected naturally infecting soybean (Glycine max) for the first time in Brazil. Here, we report the nearly complete genome sequence and molecular and biological properties of the PaVY-Br isolate. The nearly complete genome sequence is 9679 nt long and shares 84.4% nt sequence identity with a previously reported PaVY isolate from Passiflora sp. PaVY-Br induced chlorotic spots and systemic mosaic on soybean and chlorotic local lesions on yellow passion fruit (Passiflora edulis) and sesame (Sesamum indicum). The virus was successfully transmitted by Myzus persicae, indicating that this aphid vector can contribute to the spread of PaYV from passion fruit to soybean plants. Additional epidemiological research is in progress to investigate the distribution of PaVY in soybean production areas in Brazil.


Subject(s)
Passiflora , Potyvirus , Potyvirus/genetics , Glycine max , Plant Diseases , Phylogeny
2.
PeerJ ; 9: e11741, 2021.
Article in English | MEDLINE | ID: mdl-34316398

ABSTRACT

BACKGROUND: The necessity of a competent vector for transmission is a primary ecological factor driving the host range expansion of plant arthropod-borne viruses, with vectors playing an essential role in disease emergence. Cassava begomoviruses severely constrain cassava production in Africa. Curiously, begomoviruses have never been reported in cassava in South America, the center of origin for this crop. It has been hypothesized that the absence of a competent vector in cassava is the reason why begomoviruses have not emerged in South America. METHODS: We performed a country-wide whitefly diversity study in cassava in Brazil. Adults and/or nymphs of whiteflies were collected from sixty-six cassava fields in the main agroecological zones of the country. A total of 1,385 individuals were genotyped based on mitochondrial cytochrome oxidase I sequences. RESULTS: A high species richness was observed, with five previously described species and two putative new ones. The prevalent species were Tetraleurodes acaciae and Bemisia tuberculata, representing over 75% of the analyzed individuals. Although we detected, for the first time, the presence of Bemisia tabaci Middle East-Asia Minor 1 (BtMEAM1) colonizing cassava in Brazil, it was not prevalent. The species composition varied across regions, with fields in the Northeast region showing a higher diversity. These results expand our knowledge of whitefly diversity in cassava and support the hypothesis that begomovirus epidemics have not occurred in cassava in Brazil due to the absence of competent vector populations. However, they indicate an ongoing adaptation process of BtMEAM1 to cassava, increasing the likelihood of begomovirus emergence in this crop.

3.
Insects ; 11(12)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260578

ABSTRACT

By having an extensive territory and suitable climate conditions, South America is one of the most important agricultural regions in the world, providing different kinds of vegetable products to different regions of the world. However, such favorable conditions for plant production also allow the development of several pests, increasing production costs. Among them, whiteflies (Hemiptera: Aleyrodidae) stand out for their potential for infesting several crops and for being resistant to insecticides, having high rates of reproduction and dispersal, besides their efficient activity as virus vectors. Currently, the most important species occurring in South America are Bemisia afer, Trialeurodes vaporariorum, and the cryptic species Middle East-Asia Minor 1, Mediterranean, and New World, from Bemisia tabaci complex. In this review, a series of studies performed in South America were compiled in an attempt to unify the advances that have been developed in whitefly management in this continent. At first, a background of the current whitefly distribution in South American countries as well as factors affecting them are shown, followed by a background of the whitefly transmitted viruses in South America, addressing their location and association with whiteflies in each country. Afterwards, a series of management strategies are proposed to be implemented in South American fields, including cultural practices and biological and chemical control, finalizing with a section containing future perspectives and directions for further research.

4.
PeerJ ; 8: e9828, 2020.
Article in English | MEDLINE | ID: mdl-32944424

ABSTRACT

Soybean stem necrosis is caused by cowpea mild mottle virus (CPMMV), transmitted by the whitefly Bemisia tabaci. CPMMV has already been recorded in all major soybean-producing areas of Brazil. The impacts caused by CPMMV to the current Brazilian soybean production are unknown, thus the main objective of this study was to evaluate the effects of CPMMV infection on the main important soybean cultivars grown in the Southern and Midwestern regions of Brazil. Although asymptomatic in some of the tested cultivars, CPMMV infection significantly reduced the plant height, the number of pods per plant and the 1,000-grain weight. In addition, estimated yield losses ranged from 174 to 638 kg ha-1, depending on the cultivar. Evidence of seed transmission of CPMMV was observed in the BMX POTÊNCIA RR cultivar. These results suggest that CPMMV could have an important role in the reduction of soybean productivity in Brazil, but symptomless infections might be hiding the actual impact of this pathogen in commercial fields and infected seeds could be the primary inoculum source of the virus in the field.

5.
J Gen Virol ; 98(6): 1537-1551, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28612702

ABSTRACT

The emergence of begomoviruses (whitefly-transmitted viruses classified in the genus Begomovirus, family Geminiviridae) in Brazil probably occurred by horizontal transfer from non-cultivated plants after the introduction of Bemisia tabaci MEAM1. The centre of diversity of Euphorbia heterophylla (Euphorbiaceae) is located in Brazil and Paraguay, where it is an invasive species in soybean and other crops. Reports of possible begomovirus infection of E. heterophylla in Brazil date back to the 1950s. In 2011, Euphorbia yellow mosaic virus (EuYMV) was described in symptomatic plants collected in the Brazilian state of Goiás. Here we assess the genetic variability and population structure of begomoviruses infecting E. heterophylla in samples collected throughout nine Brazilian states from 2009 to 2014. A total of 158 and 57 haplotypes were compared in DNA-A and DNA-B datasets, respectively. Analysis comparing population structure in a large sampled area enabled us to differentiate two subpopulations. Further, the application of discriminant analysis of principal components allowed the differentiation of six subpopulations according to sampling locations and in agreement with phylogenetic analysis. In general, negative selection was predominant in all six subpopulations. Interestingly, we were able to reconstruct the phylogeny based on the information from the 23 sites that contributed most to the geographical structure proposed, demonstrating that these polymorphisms hold supporting information to discriminate between subpopulations. These sites were mapped in the genome and compared at the level of amino acid changes, providing insights into how genetic drift and selection contribute to maintain the patterns of begomovirus population variability from a geographical structuring point of view.


Subject(s)
Begomovirus/classification , Begomovirus/genetics , Euphorbia/virology , Genetic Variation , Phylogeography , Plant Diseases/virology , Begomovirus/isolation & purification , Brazil , Evolution, Molecular , Haplotypes
SELECTION OF CITATIONS
SEARCH DETAIL
...