Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Inflammopharmacology ; 32(3): 1929-1940, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38556563

ABSTRACT

Gout is a metabolic condition characterized by the accumulation of urate crystals in the synovial joints. These crystal depositions result in joint swelling and increased concentration of serum uric acid in blood. The commercially available drugs lower serum uric acid levels and reduce inflammation, but these standard therapies have many side effects. This study aimed to investigate anti-gout and anti-inflammatory properties of curcumin nanoparticles (CNPs). For this purpose, CNPs were prepared by dissolving curcumin into dichloromethane. Then, gout was induced by injecting monosodium urate crystals (MSU) in the ankle joint and in the intra-peritoneal cavity which caused ankle swelling and increased blood uric acid levels. CNPs in different concentrations (5, 10, and 20 ppm) and allopurinol were orally administered. The MSU crystals increased the xanthine oxidase levels both in serum and the liver. Moreover, MSU crystals increased the serum levels of interleukin 1ß, interleukin-6, tumor necrosis factor-alpha, liver function tests markers, renal function tests markers, and lipid profiles. However, the administration of CNPs decreased the levels of all these variables. CNPs increased the serum high-density lipoprotein and interleukin-10 levels. Moreover, CNPs also reduced ankle swelling significantly. Hence, the levels of xanthine oxidase, uric acid and ankle swelling were reduced significantly by oral administration of CNPs. Our findings indicate that CNPs through their anti-inflammatory properties significantly alleviate gouty arthritis. Thus, the study concluded that CNPs can be developed as an efficient anti-gout agent with minimal side effects.


Subject(s)
Anti-Inflammatory Agents , Arthritis, Gouty , Curcumin , Mice, Inbred BALB C , Nanoparticles , Uric Acid , Animals , Curcumin/pharmacology , Curcumin/administration & dosage , Uric Acid/blood , Arthritis, Gouty/drug therapy , Arthritis, Gouty/chemically induced , Mice , Nanoparticles/administration & dosage , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Male , Xanthine Oxidase/metabolism , Gout Suppressants/pharmacology , Gout Suppressants/administration & dosage , Inflammation/drug therapy , Inflammation/chemically induced
2.
Heliyon ; 10(3): e25414, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38352784

ABSTRACT

In this study, chitosan nanoparticles (CSNPs) encapsulating Foeniculum vulgare (FV) seed extract (SE) were prepared for the controlled delivery of bioactive phytoconstituents. The prepared CSNPs encapsulating FVSE as sustain-releasing nanoconjugate (CSNPs-FVSE) was used as a potent source of functional metabolites including kaempferol and quercetin for accelerated reclamation of sensory and motor functions following peripheral nerve injury (PNI). The nanoconjugate exhibited in vitro a biphasic diffusion-controlled sustained release of quercetin and kaempferol ensuring prolonged therapeutic effects. The CSNPs-FVSE was administered through gavaging to albino mice daily at a dose rate of 25 mg/kg body weight from the day of induced PNI till the end of the experiment. The conjugate-treatment induced a significant acceleration in the regain of motor functioning, evaluated from the sciatic function index (SFI) and muscle grip strength studies. Further, the hotplate test confirmed a significantly faster recuperation of sensory functions in conjugate-treated group compared to control. An array of underlying biochemical pathways regulates the regeneration under well-optimized glucose and oxidant levels. Therefore, oxidant status (TOS), blood glycemic level and total antioxidant capacity (TAC) were evaluated in the conjugate-treated group and compared with the controls. The treated subjects exhibited controlled oxidative stress and regulated blood sugars compared to the non-treated control. Thus, the nanoconjugate enriched with polyphenolics significantly accelerated the regeneration and recovery of functions after nerve lesions. The biocompatible nanocarriers encapsulating the nontoxic natural bioactive constitutents have great medicinal and economic value.

3.
ACS Omega ; 9(1): 1174-1182, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222620

ABSTRACT

Immune cell infiltration is associated with improved prognosis in the microenvironment of breast cancer. The incidence of breast cancer in Pakistan is 2.5 times higher than that in neighboring countries of Asia, accounting for 34.6% of female cancers. The objectives of this study were to compare and determine apoptotic mediators and biomarkers for breast carcinoma, such as serum granzyme B, cytochrome C, and vitamin D by ELIZA and calcium spectrophotometrically. Study groups were differentiated into malignant breast disease G-I, benign proliferative breast disease G-II, and healthy control group G-III. The immune-related prognostic markers and therapeutic targets were determined through the interaction of proteins by molecular docking and AutoDock Vina software. The level of granzyme B and cyt C was higher in Group-I, -II, and -III. Likewise, the mean vitamin D level was greater in Group-I than those in other groups. Through SwissDock, the proteins granzyme B and cyt C with vitamin D, single amino acid residue MET34 (H-bond 2.75 Å), and ILE81(H-bond 2.092 Å) were revealed to actively participate in interactions. This study reveals granzyme B and cyt C as biomarkers for malignant breast disease and benign proliferative breast disease, while hypovitaminosis D and hypocalcemia are complications or comorbidities of breast cancer.

4.
Biomedicines ; 11(11)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38002078

ABSTRACT

Molecular hybridization has emerged as the prime and most significant approach for the development of novel anticancer chemotherapeutic agents for combating cancer. In this pursuit, a novel series of indole-1,2,4-triazol-based N-phenyl acetamide structural motifs 8a-f were synthesized and screened against the in vitro hepatocellular cancer Hep-G2 cell line. The MTT assay was applied to determine the anti-proliferative potential of novel indole-triazole compounds 8a-f, which displayed cytotoxicity potential as cell viabilities at 100 µg/mL concentration, by using ellipticine and doxorubicin as standard reference drugs. The remarkable prominent bioactive structural hybrids 8a, 8c, and 8f demonstrated good-to-excellent anti-Hep-G2 cancer chemotherapeutic potential, with a cell viability of (11.72 ± 0.53), (18.92 ± 1.48), and (12.93 ± 0.55), respectively. The excellent cytotoxicity efficacy against the liver cancer cell line Hep-G2 was displayed by the 3,4-dichloro moiety containing indole-triazole scaffold 8b, which had the lowest cell viability (10.99 ± 0.59) compared with the standard drug ellipticine (cell viability = 11.5 ± 0.55) but displayed comparable potency in comparison with the standard drug doxorubicin (cell viability = 10.8 ± 0.41). The structure-activity relationship (SAR) of indole-triazoles 8a-f revealed that the 3,4-dichlorophenyl-based indole-triazole structural hybrid 8b displayed excellent anti-Hep-G2 cancer chemotherapeutic efficacy. The in silico approaches such as molecular docking scores, molecular dynamic simulation stability data, DFT, ADMET studies, and in vitro pharmacological profile clearly indicated that indole-triazole scaffold 8b could be the lead anti-Hep-G2 liver cancer therapeutic agent and a promising anti-Hep-G2 drug candidate for further clinical evaluations.

5.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37375776

ABSTRACT

Benzofuran and 1,3,4-oxadiazole are privileged and versatile heterocyclic pharmacophores which display a broad spectrum of biological and pharmacological therapeutic potential against a wide variety of diseases. This article reports in silico CADD (computer-aided drug design) and molecular hybridization approaches for the evaluation of the chemotherapeutic efficacy of 16 S-linked N-phenyl acetamide moiety containing benzofuran-1,3,4-oxadiazole scaffolds BF1-BF16. This virtual screening was carried out to discover and assess the chemotherapeutic efficacy of BF1-BF16 structural motifs as Mycobacterium tuberculosis polyketide synthase 13 (Mtb Pks13) enzyme inhibitors. The CADD study results revealed that the benzofuran clubbed oxadiazole derivatives BF3, BF4, and BF8 showed excellent and remarkably significant binding energies against the Mtb Pks13 enzyme comparable with the standard benzofuran-based TAM-16 inhibitor. The best binding affinity scores were displayed by 1,3,4-oxadiazoles-based benzofuran scaffolds BF3 (-14.23 kcal/mol), BF4 (-14.82 kcal/mol), and BF8 (-14.11 kcal/mol), in comparison to the binding affinity score of the standard reference TAM-16 drug (-14.61 kcal/mol). 2,5-Dimethoxy moiety-based bromobenzofuran-oxadiazole derivative BF4 demonstrated the highest binding affinity score amongst the screened compounds, and was higher than the reference Pks13 inhibitor TAM-16 drug. The bindings of these three leads BF3, BF4, and BF8 were further confirmed by the MM-PBSA investigations in which they also exhibited strong bindings with the Pks13 of Mtb. Moreover, the stability analysis of these benzofuran-1,3,4-oxadiazoles in the active sites of the Pks13 enzyme was achieved through molecular dynamic (MD) simulations at 250 ns virtual simulation time, which indicated that these three in silico predicted bio-potent benzofuran tethered oxadiazole molecules BF3, BF4, and BF8 demonstrated stability with the active site of the Pks13 enzyme.

6.
Metabolites ; 13(3)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36984831

ABSTRACT

The seed extract of Foeniculum vulgare (FV) was used for the preparation of a nanosuspension (NS) with an enhanced bioavailability of phytoconstituents. Subsequently, it was employed as a potent source of polyphenols, such as quercetin and kaempferol, to accelerate the regeneration and recovery of motor and sensory function in injured nerves. The NS was administered through daily gauging as NS1 (0.5 mg/mL) and NS2 (15 mg/mL), at a dose rate of 2 g/kg body weight until the end of the study. The NS-mediated retrieval of motor functions was studied by evaluating muscle grip strength and the sciatic functional index. The recovery of sensory functions was assessed by the hotplate test. Several well-integrated biochemical pathways mediate the recovery of function and the regeneration of nerves under controlled blood glucose and oxidative stress. Consequently, the NS-treated groups were screened for blood glucose, total antioxidant capacity (TAC), and total oxidant status (TOS) compared to the control. The NS administration showed a significant potential to enhance the recuperation of motor and sensory functions. Moreover, the oxidative stress was kept under check as a result of NS treatments to facilitate neuronal generation. Thus, the nanoformulation of FV with polyphenolic contents accelerated the reclamation of motor and sensory function after nerve lesion.

7.
Molecules ; 28(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36771037

ABSTRACT

Water contaminated with heavy metals constitutes an important threat. This threat is a real problem with a negative impact in some developing countries where untreated industrial effluents are used for irrigation. The present study examines heavy metals in wastewater-irrigated vegetables (apple gourd, spinach, cauliflower, sponge gourd, and coriander) water, and soil from Chenab Nagar, Chiniot, Pakistan. In particular, the metals quantified were cadmium (Cd), chromium (Cr), cobalt (Co), nickel (Ni), lead (Pb), and manganese (Mn). Among them, Cr and Co in crops irrigated -wastewater exceeded the levels recommended by the World Health Organization (WHO). In contrast, Ni, Cu, Pb, and Mn concentrations were in line with WHO standards. Compared with the limits established by the Food and Agriculture Organization of the United Nations (FAO), all the study vegetables presented higher (thus unsafe) concentrations of Cd (0.38 to 1.205 mg/Kg). There were also unsafe concentrations of Cr in coriander, sponge gourd, and cauliflower. Pb was found at an unsafe concentration (0.59 mg/Kg) in cauliflower. Conversely, Ni and Mn concentrations were below the maximum permissible limits by WHO, and FAO in all of the analyzed samples. The contamination load index (CLI) in soil, bioconcentration factor (BCF) in plants, daily intake of metals (DIM), and health risk index (HRI) have also been evaluated to estimate the potential risk to human health in that area. We have found an important risk of transitions of Pb, Cd, Cr, and Co from water/soil to the edible part of the plant. The highest HRI value associated with Cd (6.10-13.85) followed by Cr (1.25-7.67) for all vegetable samples presented them as high health risk metal contaminants. If the issue is not addressed, consumption of wastewater-irrigated vegetables will continue posing a health risk.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Vegetables , Wastewater , Cadmium , Lead , Environmental Monitoring , Metals, Heavy/toxicity , Metals, Heavy/analysis , Nickel , Chromium/toxicity , Cobalt , Soil , Manganese , Water , Soil Pollutants/toxicity , Soil Pollutants/analysis , Risk Assessment
8.
Molecules ; 28(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36677762

ABSTRACT

Allenes with two carbon-carbon double bonds belong to a unique class of unsaturated hydrocarbons. The central carbon atom of allene is sp hybridized and forms two σ-bonds and two π-bonds with two terminal sp2 hybridized carbon atoms. The chemistry of allenes has been well documented over the last decades. They are more reactive than alkenes due to higher strain and exhibit significant axial chirality, thus playing a vital role in asymmetric synthesis. Over a variety of organic transformations, allenes specifically undergo classical metal catalyzed cycloaddition reactions to obtain chemo-, regio- and stereoselective cycloadducts. This review briefly describes different types of annulations including [2+2], [2+2+1], [3+2], [2+2+2], [4+2], [5+2], [6+2] cycloadditions using titanium, cobalt, rhodium, nickel, palladium, platinum, gold and phosphine catalyzed reactions along with a mechanistic study of some highlighted protocols. The synthetic applications of these reactions towards the synthesis of natural products such as aristeromycin, ent-[3]-ladderanol, waihoensene(-)-vindoline and (+)-4-epi-vindoline have also been described.

9.
Biomed Res Int ; 2022: 4987929, 2022.
Article in English | MEDLINE | ID: mdl-36325499

ABSTRACT

Medicinal plants are used to control and remediate oxidative stress related diseases caused by free radicals. Thus, these plants find their use as remedy. Moringa oleifera is an extremely valued plant for its medicinal properties. Herein, two indigenously produced accessions of Moringa oleifera seeds [originated from Multan (M-Mln) and India (PKM1)] were investigated for their antioxidant properties by 2.2-Diphenyl-1picrylhydrazyl (DPPH) assay, total phenolics content and total flavonoids content. The presence of various phenolics as well as flavonoids was further confirmed by high performance liquid chromatography. Moreover, fourier transform infrared spectroscopy detected the presence of various functional groups. In conclusion, these findings revealed that the methanol extract of M-Mln variety seeds showed high antioxidant potential, having IC50 value of 84 µg/ml. While, hexane extract of PKM1 showed least activity. The methanol extract of M-Mln was found to show highest total phenolics content as 33.83 ± 1.19 mg GAE/g. The methanol extract of M-Mln was found to show highest total flavonoids content as 76.07 ± 1.10 mg CAE/g. The hexane extract of PKM1 was found to show least total flavonoids content as 22.47 ± 1.70 mg CAE/g. The detection of phenolics (ferulic acid, caffeic acid, chlorogenic acid, coumaric acid, and gallic acid) as well as flavonoids (catechin and quercetin) revealed the potential of methanol extracts of both varieties as a good source of antioxidants. The results indicated the importance of seed extracts in the treatment of oxidative stress related diseases. In future, the use of natural antioxidants will prevent the progression of diseases.


Subject(s)
Moringa oleifera , Moringa oleifera/chemistry , Antioxidants/chemistry , Hexanes , Methanol , Plant Extracts/chemistry , Seeds/chemistry , Flavonoids/analysis , Phenols/analysis , Plant Leaves/chemistry
10.
Molecules ; 27(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35897953

ABSTRACT

Piperazine-based dithiocarbamates serve as important scaffolds for numerous pharmacologically active drugs. The current study investigates the design and synthesis of a series of dithiocarbamates with a piperazine unit as well as their biological activities. Under ultrasound conditions, the corresponding piperazine-1-carbodithioates 5a-5j were synthesized from monosubstituted piperazine 2 and N-phenylacetamides 4a-4j in the presence of sodium acetate and carbon disulfide in methanol. The structures of the newly synthesized piperazines were confirmed, and their anti-lung carcinoma effects were evaluated. A cytotoxic assay was performed to assess the hemolytic and thrombolytic potential of the synthesized piperazines 5a-5j. The types of substituents on the aryl ring were found to affect the anticancer activity of piperazines 5a-5j. Piperazines containing 2-chlorophenyl (5b; cell viability = 25.11 ± 2.49) and 2,4-dimethylphenyl (5i; cell viability = 25.31 ± 3.62) moieties demonstrated the most potent antiproliferative activity. On the other hand, piperazines containing 3,4-dichlorophenyl (5d; 0.1%) and 3,4-dimethylphenyl (5j; 0.1%) rings demonstrated the least cytotoxicity. The piperazine with the 2,5-dimethoxyphenyl moiety (5h; 60.2%) showed the best thrombolytic effect. To determine the mode of binding, in silico modeling of the most potent piperazine (i.e., 5b) was performed, and the results were in accordance with those of antiproliferation. It exhibits a similar binding affinity to PQ10 and an efficient conformational alignment with the lipophilic site of PDE10A conserved for PQ10A.


Subject(s)
Antineoplastic Agents , Piperazines , Antineoplastic Agents/chemistry , Cell Survival , Computer Simulation , Piperazine/pharmacology , Piperazines/chemistry , Structure-Activity Relationship
11.
Comput Math Methods Med ; 2022: 1721526, 2022.
Article in English | MEDLINE | ID: mdl-35535227

ABSTRACT

Whether TERT promoter mutation is related to more aggressive clinicopathologic features and worse outcomes in papillary thyroid carcinoma patients (PTCs) is still variable and controversial. Our intention was to investigate the risk or prognostic factors that may additionally predict the TERT promoter mutation doable of these lesions and new prevention techniques in PTCs. A total of 2,539 PTC patients with 11.50% TERT mutation have been analyzed using Revman 5.3 software in this study. The PubMed and Embase databases were systematically searched for works published until November 9, 2021. The following variables had been associated with an extended chance of TERT promoter mutation in PTC patients: age < 45 years (MD = 10.93, 95%CI = 7.25-14.61); gender = male (pooled OR = 1.63, 95%CI = 1.17-2.28); tumor size > 1 cm (MD = 0.56, 95%CI = 0.34-0.77); lymph node metastasis (pooled OR = 1.29, 95%CI = 0.93-1.79); vascular invasion (pooled OR = 1.78, 95%CI = 0.83-3.84); extrathyroidal extension (pooled OR = 2.00, 95%CI = 1.32-3.02); distant metastasis (pooled OR = 1.46, 95%CI = 1.04-2.04); advanced TNM stage (pooled OR = 3.19, 95%CI = 2.28-4.45). In addition, multifocality (pooled OR = 0.67, 95%CI = 0.14-3.24) had no affiliation with TERT promoter mutation in PTC patients. Our finding showed that age < 45 years, male, tumor size > 1 cm, lymph node metastasis, vascular invasion, and superior/advanced TNM stage were dangerous elements for TERT promoter mutation of worse effect in PTCs while that multifocality was once negatively correlated. TERT promoter mutation is drastically associated with recurrence and PTC-related mortality.


Subject(s)
Telomerase , Thyroid Cancer, Papillary , Humans , Lymphatic Metastasis , Male , Middle Aged , Mutation , Prognosis , Risk Factors , Telomerase/genetics , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology
12.
Pak J Pharm Sci ; 35(1(Supplementary)): 177-182, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35228175

ABSTRACT

A green ultrasound assisted convenient approach has been reported for the ring opening of epoxides. As a result, a series of N-phenyl piperazine and morpholine based ß-amino alcohols has been synthesized under ultrasound irradiation in DMSO for 60 minutes at 70°C. This methodology showed excellent tolerance with various epoxides and provided excellent yields upto 96%. All the synthetic derivatives (4a-e) (5c-d) significantly influence the catalytic activity of protease while 5d exhibited maximum (100%) inhibitory effect with a half-life of 40.76 minutes. Among the target derivatives, compound 4c exhibited significant antibacterial activity against Bacillus subtilis and Escherichia coli bacterial strains with zone of inhibition values 45 mm and 32 mm, respectively.


Subject(s)
Amino Acids/pharmacology , Anti-Bacterial Agents/pharmacology , Epoxy Compounds/chemistry , Protease Inhibitors/pharmacology , Amino Acids/chemical synthesis , Structure-Activity Relationship
13.
Mol Divers ; 26(1): 647-689, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33609222

ABSTRACT

Cross-coupling reactions are powerful synthetic tools for the formation of remarkable building blocks of many naturally occurring molecules, polymers and biologically active compounds. These reactions have brought potent transformations in chemical and pharmaceutical disciplines. In this review, we have focused on the use of cross-coupling reactions such as Suzuki, Negishi, Heck, Sonogashira and Stille in the total synthesis of some natural products of recent years (2016-2020). A short introduction of mentioned cross-coupling reactions along with highlighted aspects of natural products has been stated in separate sections. Additionally, few examples of natural products via incorporation of more than one type of cross-coupling reaction have also been added to demonstrate the importance of these reactions in organic synthesis.


Subject(s)
Biological Products , Catalysis , Chemistry Techniques, Synthetic , Molecular Structure
14.
Biomed Res Int ; 2021: 3094571, 2021.
Article in English | MEDLINE | ID: mdl-34725636

ABSTRACT

Obesity is a chronic metabolic and noncommunicable disease that affects 50% of world population. Reactive oxygen species and oxidative stress are interconnected with the obesity and several metabolic disorders, gaining the attention of scientific community to combat this problem naturally. Among various fruits, mango as a yellow fruit is rich in polyphenols, carotenoids, terpenes, and flavonoids that act as antioxidants to protect against free radicals produced in the body. The present study was performed to explore in vivo antioxidant potential of mango peels against dyslipidemia and oxidative stress in overweight subjects. The female volunteers (n = 31) between 25 and 45 years of age having a body mass index (BMI) of 25.0-29.9 (overweight) were included in this study, while participants with complications as diabetes, hypertension, cardiovascular, and liver diseases were excluded. The treatment group consumed 1 g mango peel powder for 84 days. The subjects were analyzed for biochemical analysis, antioxidant status, and anthropometric measurements at baseline and end of the study period. Further, at the end of study, the safety evaluation tests were also performed. The results showed that upon consumption of mango peel powder, low-density lipoproteins (LDL), cholesterol, triglyceride, urea, and creatinine levels were decreased and high-density lipoprotein (HDL) level was increased (P ≤ 0.05), while thiobarbituric acid reactive substances (TBARS) showed increased antioxidant status (P ≤ 0.05) which suggests that mango peels have a strong management potential against oxidative stress and dyslipidemia in obese subjects.


Subject(s)
Dyslipidemias/diet therapy , Mangifera/metabolism , Obesity/diet therapy , Adult , Antioxidants/chemistry , Body Mass Index , Carotenoids/metabolism , Female , Flavonoids/analysis , Fruit/chemistry , Humans , Obesity/metabolism , Overweight/diet therapy , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism , Triglycerides/analysis
15.
J Pak Med Assoc ; 71(3): 830-833, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34057930

ABSTRACT

OBJECTIVE: To evaluate the effect of cookies supplemented with apple pomace and mango-peel powder on postprandial glucose and insulin concentration. METHODS: The experimental study was conducted from February to August, 2018, at the Nutrition Counselling Centre, Government College Women University, Faisalabad, Pakistan. Different cookies with apple pomace and mango-peel powder were prepared and the most nutritive acceptable cookies were used to determine their postprandial effect on glucose and insulin concentrations against the control cookies made with white flour only in female subjects. Adult women were selected through advertisement with normal body mass index. Data was analysed using SPSS 17. RESULTS: All the 30 subjects received enriched and control cookies at different time slots during the study. The overall mean age of the sample was 25±10 years and each subject had body mass index <25kg/m2. Overall blood glucose and insulin concentrations were significantly lower with treatment cookies , compared to the control cookies (p<0.05). CONCLUSIONS: It was evident that fruit processing waste can be used as a nutraceutical agent in diet-based modules.


Subject(s)
Glucose , Insulin , Adolescent , Adult , Female , Flour , Humans , Pakistan , Postprandial Period , Young Adult
16.
BMC Chem ; 13(1): 29, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31384777

ABSTRACT

Priming is a valuable, facile and well-established technique used to enhance seed quality to achieve rapid germination, establishment of stress resistance and improvement of crop yields. Different natural and synthetic priming agents have been used for better crop performance and abiotic stress management. In this study, four different benzimidazoles were selected as priming agents and their comparative effects were evaluated on different biochemical attributes including total soluble protein, total oxidant status, MDA contents, antioxidant enzymes (SOD, POD) and hydrolytic enzymes (protease, estrases) compared to control. Treatments with 2-thio-1-H-benzimidazole reduced total soluble proteins and increased total oxidant status significantly but no considerable effect was observed on other parameters. Priming with 2-(4-chlorophenyl)-1-H-benzimidazole considerably increased the total oxidant status and a little improvement was observed in total soluble proteins. Seeds primed with 1-H-benzimidazole showed a noticeable decrease in the protease activity while all other priming treatments were unable to induce any detectable change compared to control. The treatment with 2-(4-methoxyphenyl)-1-H-benzimidazole induced maximum reduction in MDA contents and POD activity. Moreover, all benzimidazole priming treatments reduced mean germination time, increased germination percentage and germination rate of wheat seeds.

17.
Pak J Pharm Sci ; 32(5(Supplementary)): 2317-2324, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31894061

ABSTRACT

Zn, Cu, Co and Ni are biocompatible metals as they are active center of many enzymes in the human body. Incorporation of these biocompatible metals into 3-(o-Sulfamoylphenyl) carbamoylbenzoic acid (I) makes them able to prove an excellent antimicrobial agent. In the present study Ni (II), Co (II), Cu(II) and Zn (II) complexes (III-VI) were synthesized from ligand (I) derive from 3-(o-Sulfamoylphenyl) carbamoylbenzoic acid and zinc, nickel, cobalt acetate tetrahydrate/copper acetate monohydrate. Synthesized complexes (III-VI) were characterized by FT-IR, 1H NMR and 13CNMR. III-VI have 81-93% yield while melting points recorded were in the range of 209-239oC. Purity of ligands and their respective complexes was confirmed by TLC. Results of antibacterial properties suggested that III, IV, V and VI were highly active against gram +ve (S. epidermidis, B. subtilis. S. aureus, S. mutans) and gram -ve bacteria (E. coli and P. aruginosa). Comparison was also performed to check whether metal complexes or ligand with its derivative exhibit best result against all tested strains. The anthelmintic activity of the complexes III-VI against tape worm, liver fluke, thread worm, and hook worm using three different concentrations (15, 30, 45mg/mL), significantly (p<0.01) paralyzed the worms followed by death, which was comparable with that of the standard. Overall results indicated that S. epidermidis, S. mutans, E. coli and B. subtilis are very sensitive to complex III & IV and can be used for treatment of bacterial infections whereas Complex-V, could a potent target for anti-parasite therapy.


Subject(s)
Anti-Infective Agents/chemical synthesis , Benzoates/chemical synthesis , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Benzoates/chemistry , Benzoates/pharmacology , Benzoic Acid/chemistry , Coordination Complexes , Drug Design , Fasciola hepatica/drug effects , Sheep
18.
Chem Cent J ; 11(1): 133, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29260332

ABSTRACT

The present investigation aimed to study and compare the efficiency of non-viable fungal isolates to remove divalent lead (Pb(II)) from aqueous streams. The selected fungal isolates showed identity with Aspergillus caespitosus, Aureobasidium sp. RBSS-303 and Aspergillus flavus HF5 as confirmed using gene sequencing of ITS regions of the ribosomal DNA (rDNA). The obtained equilibrium data for Pb(II) biosorption of A. caespitosus fitted better to Langmuir isotherm with maximum sorption capacity of 351.0 mg/g and A. sp. RBSS-303 and A. flavus HF5 showed good fit to Freundlich isotherm with maximum sorption capacity of 271.5 and 346.3 mg/g respectively. The values of thermodynamic factors ascertained the nature of adsorption process is endothermic with A. caespitosus and A. flavus HF5 but exothermic with A. sp. RBSS-303. The experimental data for Pb(II) biosorption fits very well to pseudo second order kinetic model. With HCl the maximum 85.5, 75.3, 73.7% recovery of Pb(II) was obtained from A. caespitosus, A. sp. RBSS-303 and A. flavus HF5, respectively. The observed percentage loss in sorption capacity of Pb(II) was 3.9% by A. flavus HF5, 12.2% by A. caespitosus and 26.6% by A. sp. RBSS-303 after five cyclic studies of sorption and desorption. Results from the study confirmed the efficiency order of A. caespitosus > A. flavus HF5 > A. sp. RBSS-303 to remove and recover Pb(II) from aqueous solution. Finally, the fungal biosorbents can be used as soil conditioning agent after compositing into valuables fungal protein.

19.
Chem Cent J ; 11(1): 97, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-29086883

ABSTRACT

BACKGROUND: The plant biomass and agro-industrial wastes show great potential for their use as attractive low cost substrates in biotechnological processes. Wheat straw and corn cob as hemicellulosic substrates were acid hydrolyzed and enzymatically saccharified for high xylose production. The hydrolysate was concentrated and fermented by using Saccharomyces cerevisiae and Kluyveromyces for production of xylitol. RESULTS: Acid hydrolysis of wheat straw and corn cob in combination with enzymatic hydrolysis showed great potential for production of free sugars from these substrates. Kluyveromyces produced maximum xylitol from acid treated wheat straw residues with enzymatic saccharification. The percentage xylitol yield was 89.807 g/L and volumetric productivity of 0.019 g/L/h. Kluyveromyces also produced maximum xylitol from corn cob acid hydrolyzed liquor with xylitol yield 87.716 g/L and volumetric productivity 0.018 g/L/h. CONCLUSION: Plant and agro-industrial biomass can be used as a carbohydrate source for the production of xylitol and ethanol after microbial fermentation. This study revealed that wheat straw acid and enzyme hydrolyzed residue proved to be best raw material for production of xylitol with S. cerevisiae. The xylitol produced can be utilized in pharmaceuticals after purification on industrial scale as pharmaceutical purposes.

20.
Molecules ; 22(10)2017 Oct 12.
Article in English | MEDLINE | ID: mdl-29023406

ABSTRACT

Single-nitrogen containing saturated cyclic amines are an important part of both natural and synthetic bioactive compounds. A number of methodologies have been developed for the synthesis of aziridines, azetidines, pyrrolidines, piperidines, azepanes and azocanes. This review highlights some facile and green synthetic routes for the synthesis of unsubstituted, multisubstituted and highly functionalized saturated cyclic amines including one-pot, microwave assisted, metal-free, solvent-free and in aqueous media.


Subject(s)
Amines/chemical synthesis , Chemistry Techniques, Synthetic , Green Chemistry Technology , Aziridines/chemical synthesis , Cyclization , Microwaves , Nitrogen/chemistry , Piperidines/chemical synthesis , Pyrrolidines/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...