Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Expr Purif ; 170: 105589, 2020 06.
Article in English | MEDLINE | ID: mdl-32027983

ABSTRACT

The cation-independent mannose-6-phosphate receptor (CI-M6PR, aka insulin-like growth factor II receptor or IGFIIR) is a membrane protein that plays a central role in the trafficking of lysosomal acid hydrolases into lysosomes via mannose-6-phosphate (M6P) binding domains. In order to maintain cellular metabolic/catabolic homeostasis, newly synthesized lysosomal acid hydrolases are required to bind to M6PR for transit. Acid hydrolases secreted by cells can also be internalized via M6PR residing on the cell membrane and are transported to the lysosomes, a feature that enables enzyme replacement therapy for the treatment of several lysosomal storage disorders. Therefore, a thorough characterization of this receptor is critical to the development of lysosomal enzyme-based therapeutics that utilize M6PR for drug delivery to the lysosome. However, the extracellular domain (ECD) of M6PR is highly complex, containing 15-mannose receptor homology (MRH) domains. In addition, homodimerization of the receptor can occur at the membrane, making its characterization challenging. In this study, a novel human M6PR (hM6PR)-overexpressing cell line originally established for hM6PR cellular uptake assay was utilized for production of hM6PR-ECD, and a novel small molecule biomimetic (aminophenyl-M6P) affinity resin was developed for the purification of M6PR-ECD. The affinity-purified hM6PR-ECD was monomeric, contained 14 intact MRH domains (1-14) and a partial MRH domain 15, and was successfully employed in ELISA-based and surface plasmon resonance-based binding assays to demonstrate its ligand-binding functionality, making it suitable for the evaluation of biotherapeutics that utilize M6PR for cellular internalization.


Subject(s)
Aminophenols/chemistry , Biomimetic Materials/chemistry , Cell Membrane/enzymology , Mannosephosphates/chemistry , Receptor, IGF Type 2/isolation & purification , Amino Acid Sequence , Aminophenols/metabolism , Biomimetic Materials/metabolism , Cell Line, Tumor , Cell Membrane/chemistry , Chromatography, Affinity , Enzyme Assays , Enzyme-Linked Immunosorbent Assay , Fibroblasts/chemistry , Fibroblasts/enzymology , Gene Expression , Humans , Kinetics , Mannosephosphates/metabolism , Protein Domains , Receptor, IGF Type 2/genetics , Receptor, IGF Type 2/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Alignment , Surface Plasmon Resonance
2.
J Struct Biol ; 205(3): 65-71, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30802506

ABSTRACT

Mucopolysaccharidosis III B (MPS III-B) is a rare lysosomal storage disorder caused by deficiencies in Alpha-N-acetylglucosaminidase (NAGLU) for which there is currently no cure, and present treatment is largely supportive. Understanding the structure of NAGLU may allow for identification of novel therapeutic targets for MPS III-B. Here we describe the first crystal structure of human NAGLU, determined to a resolution of 2.3 Å. The crystal structure reveals a novel homotrimeric configuration, maintained primarily by hydrophobic and electrostatic interactions via domain II of three contiguous domains from the N- to C-terminus. The active site cleft is located between domains II and III. Catalytic glutamate residues, E316 and E446, are located at the top of the (α/ß)8 barrel structure in domain II. We utilized the three-dimensional structure of NAGLU to map several MPS III-B mutations, and hypothesize their functional consequences. Revealing atomic level structural information about this critical lysosomal enzyme paves the way for the design of novel therapeutics to target the underlying causes of MPS III-B.


Subject(s)
Acetylglucosamine/chemistry , Acetylglucosaminidase/chemistry , Acetylglucosamine/metabolism , Acetylglucosaminidase/genetics , Acetylglucosaminidase/metabolism , Amino Acid Motifs , Catalytic Domain , Cell Line, Tumor , Cloning, Molecular , Crystallography, X-Ray , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Mucopolysaccharidosis III/enzymology , Mucopolysaccharidosis III/genetics , Mucopolysaccharidosis III/pathology , Mutation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Static Electricity , Structural Homology, Protein , Substrate Specificity
3.
J Pharmacol Exp Ther ; 366(2): 291-302, 2018 08.
Article in English | MEDLINE | ID: mdl-29752426

ABSTRACT

Follistatin (FS) is an important regulatory protein, a natural antagonist for transforming growth factor-ß family members activin and myostatin. The diverse biologic roles of the activin and myostatin signaling pathways make FS a promising therapeutic target for treating human diseases exhibiting inflammation, fibrosis, and muscle disorders, such as Duchenne muscular dystrophy. However, rapid heparin-mediated hepatic clearance of FS limits its therapeutic potential. We targeted the heparin-binding loop of FS for site-directed mutagenesis to improve clearance parameters. By generating a series of FS variants with one, two, or three negative amino acid substitutions, we demonstrated a direct and proportional relationship between the degree of heparin-binding affinity in vitro and the exposure in vivo. The triple mutation K(76,81,82)E abolished heparin-binding affinity, resulting in ∼20-fold improved in vivo exposure. This triple mutant retains full functional activity and an antibody-like pharmacokinetic profile, and shows a superior developability profile in physical stability and cell productivity compared with FS variants, which substitute the entire heparin-binding loop with alternative sequences. Our surgical approach to mutagenesis should also reduce the immunogenicity risk. To further lower this risk, we introduced a novel glycosylation site into the heparin-binding loop. This hyperglycosylated variant showed a 10-fold improved exposure and decreased clearance in mice compared with an IgG1 Fc fusion protein containing the native FS sequence. Collectively, our data highlight the importance of improving pharmacokinetic properties by manipulating heparin-binding affinity and glycosylation content and provide a valuable guideline to design desirable therapeutic FS molecules.


Subject(s)
Follistatin/genetics , Follistatin/pharmacokinetics , Protein Engineering , Recombinant Proteins/genetics , Recombinant Proteins/pharmacokinetics , Amino Acid Motifs , Amino Acid Sequence , Animals , Female , Follistatin/metabolism , Follistatin/therapeutic use , Glycosylation , Heparin/metabolism , Humans , Mice , Mutation , Recombinant Proteins/metabolism , Recombinant Proteins/therapeutic use , Tissue Distribution
4.
Methods Mol Biol ; 1100: 61-74, 2014.
Article in English | MEDLINE | ID: mdl-24218250

ABSTRACT

Human complement component C2 is a critical factor of the classical complement pathway. Here we provide a method for the production of recombinant human C2 (rhC2) protein for research purposes. The human complement component C2 (hC2) is cloned from a human cDNA library by polymerase chain reaction and inserted in a mammalian expression vector (Martini et al., BMC Immunol 11:43, 2010). Transient transfection is utilized to express hC2 in a mammalian cell line, and the expressed C2 is harvested from the conditioned media. rhC2 is purified from the conditioned media by sequential steps of cation exchange and affinity column chromatography. The purified hC2 is characterized for protein purity, stability, and enzymatic activity. The recombinant hC2 activity is tested in a complement activation ELISA assay that measures classical, alternative, and lectin complement pathway activity in C2-depleted serum.


Subject(s)
Complement C2/biosynthesis , Complement C2/genetics , Gene Expression , Recombinant Proteins , Cell Line , Chromatography, High Pressure Liquid , Complement C2/chemistry , Complement C2/isolation & purification , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Humans
5.
BMC Immunol ; 11: 43, 2010 Aug 20.
Article in English | MEDLINE | ID: mdl-20727163

ABSTRACT

BACKGROUND: Complement C2 deficiency is the most common genetically determined complete complement deficiency and is associated with a number of diseases. Most prominent are the associations with recurrent serious infections in young children and the development of systemic lupus erythematosus (SLE) in adults. The links with these diseases reflect the important role complement C2 plays in both innate immunity and immune tolerance. Infusions with normal fresh frozen plasma for the treatment of associated disease have demonstrated therapeutic effects but so far protein replacement therapy has not been evaluated. RESULTS: Human complement C2 was cloned and expressed in a mammalian cell line. The purity of recombinant human C2 (rhC2) was greater than 95% and it was characterized for stability and activity. It was sensitive to C1s cleavage and restored classical complement pathway activity in C2-deficient serum both in a complement activation ELISA and a hemolytic assay. Furthermore, rhC2 could increase C3 fragment deposition on the human pathogen Streptococcus pneumoniae in C2-deficient serum to levels equal to those with normal serum. CONCLUSIONS: Taken together these data suggest that recombinant human C2 can restore classical complement pathway activity and may serve as a potential therapeutic for recurring bacterial infections or SLE in C2-deficient patients.


Subject(s)
Complement C2/metabolism , Immunologic Deficiency Syndromes/genetics , Lupus Erythematosus, Systemic/genetics , Recombinant Proteins/metabolism , Streptococcal Infections/genetics , Streptococcus pneumoniae/immunology , Adult , Cell Line, Transformed , Child , Complement C1/immunology , Complement C1/metabolism , Complement C2/genetics , Complement C2/therapeutic use , Complement C3/immunology , Complement C3/metabolism , Complement Pathway, Classical/drug effects , Humans , Immunologic Deficiency Syndromes/complications , Immunologic Deficiency Syndromes/drug therapy , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/drug therapy , Protein Binding/drug effects , Recombinant Proteins/genetics , Recombinant Proteins/therapeutic use , Recurrence , Streptococcal Infections/complications , Streptococcal Infections/drug therapy
6.
J Biol Chem ; 280(2): 1248-56, 2005 Jan 14.
Article in English | MEDLINE | ID: mdl-15504722

ABSTRACT

The mammalian rod photoreceptor phosphodiesterase (PDE6) holoenzyme is isolated in both a membrane-associated and a soluble form. Membrane binding is a consequence of prenylation of PDE6 catalytic subunits, whereas soluble PDE6 is purified with a 17-kDa prenyl-binding protein (PDEdelta) tightly bound. This protein, here termed PrBP/delta, has been hypothesized to reduce activation of PDE6 by transducin, thereby desensitizing the photoresponse. To test the potential role of PrBP/delta in regulating phototransduction, we examined the abundance, localization, and potential binding partners of PrBP/delta in retina and in purified rod outer segment (ROS) suspensions whose physiological and biochemical properties are well characterized. The amphibian homologue of PrBP/delta was cloned and sequenced and found to have 82% amino acid sequence identity with mammalian PrBP/delta. In contrast to bovine ROS, all of the PDE6 in purified frog ROS is membrane-associated. However, addition of recombinant frog PrBP/delta can solubilize PDE6 and prevent its activation by transducin. PrBP/delta also binds other prenylated photoreceptor proteins in vitro, including opsin kinase (GRK1/GRK7) and rab8. Quantitative immunoblot analysis of the PrBP/delta content of purified ROS reveals insufficient amounts of PrBP/delta (<0.1 PrBP/delta per PDE6) to serve as a subunit of PDE6 in either mammalian or amphibian photoreceptors. The immunolocalization of PrBP/delta in frog and bovine retina shows greatest PrBP/delta immunolabeling outside the photoreceptor cell layer. Within photoreceptors, only the inner segments of frog double cones are strongly labeled, whereas bovine photoreceptors reveal more PrBP/delta labeling near the junction of the inner and outer segments (connecting cilium) of photoreceptors. Together, these results rule out PrBP/delta as a PDE6 subunit and implicate PrBP/delta in the transport and membrane targeting of prenylated proteins (including PDE6) from their site of synthesis in the inner segment to their final destination in the outer segment of rods and cones.


Subject(s)
Carrier Proteins/chemistry , Carrier Proteins/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Vision, Ocular , Amino Acid Sequence , Animals , Carrier Proteins/genetics , Cattle , Cell Membrane/metabolism , Conserved Sequence , Cyclic Nucleotide Phosphodiesterases, Type 6 , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Immunohistochemistry , Molecular Sequence Data , Molecular Weight , Phosphoric Diester Hydrolases/metabolism , Rana catesbeiana , Retinal Cone Photoreceptor Cells/metabolism , Rod Cell Outer Segment/chemistry , Rod Cell Outer Segment/cytology , Rod Cell Outer Segment/metabolism , Solubility , Transducin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL