Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Antimicrob Agents Chemother ; : e0035724, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39345183

ABSTRACT

Isoniazid is an important first-line medicine to treat tuberculosis (TB). Isoniazid resistance increases the risk of poor treatment outcomes and development of multidrug resistance, and is driven primarily by mutations involving katG, encoding the prodrug-activating enzyme, rather than its validated target, InhA. The chemical tractability of InhA has fostered efforts to discover direct inhibitors of InhA (DIIs). In this study, we bridge the gap in understanding the potential contribution of DIIs to novel combination regimens and demonstrate a clear distinction of DIIs, like GSK693 and the newly described GSK138, from isoniazid, based on activity against clinical isolates and contribution to novel drug regimens. The results suggest that DIIs, specifically GSK138 and GSK693, could be promising partners in novel drug regimens, including those used against isoniazid-resistant TB, potentially enhancing their efficacy and/or preventing the selection of resistant mutants and supporting the continued exploration of InhA as a promising target for TB drug development.

2.
Antimicrob Agents Chemother ; 68(10): e0061524, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39287403

ABSTRACT

Despite known treatments, tuberculosis (TB) remains the world's top infectious killer, highlighting the pressing need for new drug regimens. To prioritize the most efficacious drugs for clinical testing, we previously developed a PK-PD translational platform with bacterial dynamics that reliably predicted short-term monotherapy outcomes in Phase IIa trials from preclinical mouse studies. In this study, we extended our platform to include PK-PD models that account for drug-drug interactions in combination regimens and bacterial regrowth in our bacterial dynamics model to predict cure at the end of treatment and relapse 6 months post-treatment. The Phase III STAND trial testing a new regimen comprised of pretomanid (Pa), moxifloxacin (M), and pyrazinamide (Z) (PaMZ) was suspended after a separate ongoing trial (NC-005) suggested that adding bedaquiline (B) to the PaMZ regimen would improve efficacy. To forecast if the addition of B would, indeed, benefit the PaMZ regimen, we applied an extended translational platform to both regimens. We predicted currently available short- and long-term clinical data well for drug combinations related to BPaMZ. We predicted the addition of B to PaMZ to shorten treatment duration by 2 months and to have similar bacteriological success to standard HRZE treatment (considering only treatment success but not withdrawal from side effects and other adverse events), both at the end of treatment for treatment efficacy and 6 months after treatment has ended in relapse prevention. Using BPaMZ as a case study, we have demonstrated our translational platform can predict Phase II and III outcomes prior to actual trials, allowing us to better prioritize the regimens most likely to succeed.


Subject(s)
Antitubercular Agents , Diarylquinolines , Moxifloxacin , Mycobacterium tuberculosis , Pyrazinamide , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , Pyrazinamide/therapeutic use , Pyrazinamide/pharmacology , Animals , Mice , Diarylquinolines/pharmacology , Diarylquinolines/therapeutic use , Moxifloxacin/therapeutic use , Moxifloxacin/pharmacology , Mycobacterium tuberculosis/drug effects , Humans , Tuberculosis/drug therapy , Tuberculosis/microbiology , Drug Therapy, Combination , Nitroimidazoles/therapeutic use , Nitroimidazoles/pharmacology , Treatment Outcome , Drug Interactions
3.
Nat Commun ; 15(1): 7311, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39181887

ABSTRACT

TBI-223, a novel oxazolidinone for tuberculosis, is designed to provide improved efficacy and safety compared to linezolid in combination with bedaquiline and pretomanid (BPaL). We aim to optimize the dosing of TBI-223 within the BPaL regimen for enhanced therapeutic outcomes. TBI-223 is investigated in preclinical monotherapy, multidrug therapy, and lesion penetration experiments to describe its efficacy and safety versus linezolid. A translational platform incorporating linezolid and BPaL data from preclinical experiments and 4 clinical trials (NCT00396084, NCT02333799, NCT03086486, NCT00816426) is developed, enabling validation of the framework. TBI-223 preclinical and Phase 1 data (NCT03758612) are applied to the translational framework to predict clinical outcomes and optimize TBI-223 dosing in combination with bedaquiline and pretomanid. Results indicate that daily doses of 1200-2400 mg TBI-223 may achieve efficacy comparable to the BPaL regimen, with >90% of patients predicted to reach culture conversion by two months.


Subject(s)
Antitubercular Agents , Diarylquinolines , Linezolid , Oxazolidinones , Linezolid/administration & dosage , Linezolid/therapeutic use , Humans , Antitubercular Agents/administration & dosage , Antitubercular Agents/therapeutic use , Oxazolidinones/administration & dosage , Oxazolidinones/therapeutic use , Diarylquinolines/administration & dosage , Diarylquinolines/therapeutic use , Animals , Female , Male , Mycobacterium tuberculosis/drug effects , Drug Therapy, Combination , Adult , Tuberculosis/drug therapy , Treatment Outcome , Middle Aged , Mice , Dose-Response Relationship, Drug , Nitroimidazoles
4.
bioRxiv ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38826442

ABSTRACT

Maintaining safe and potent pharmaceutical drug levels is often challenging. Multidomain peptides (MDPs) assemble into supramolecular hydrogels with a well-defined, highly porous nanostructure that makes them attractive for drug delivery, yet their ability to extend release is typically limited by rapid drug diffusion. To overcome this challenge, we developed self-assembling boronate ester release (SABER) MDPs capable of engaging in dynamic covalent bonding with payloads containing boronic acids (BAs). As examples, we demonstrate that SABER hydrogels can prolong the release of five BA-containing small-molecule drugs as well as BA-modified insulin and antibodies. Pharmacokinetic studies revealed that SABER hydrogels extended the therapeutic effect of ganfeborole from days to weeks, preventing Mycobacterium tuberculosis growth better than repeated oral administration in an infection model. Similarly, SABER hydrogels extended insulin activity, maintaining normoglycemia for six days in diabetic mice after a single injection. These results suggest that SABER hydrogels present broad potential for clinical translation.

5.
Am J Respir Crit Care Med ; 210(3): 343-351, 2024 08 01.
Article in English | MEDLINE | ID: mdl-38564365

ABSTRACT

Rationale: Observational studies suggest that high-dose isoniazid may be efficacious in treating multidrug-resistant tuberculosis. However, its activity against Mycobacterium tuberculosis (M.tb) with katG mutations (which typically confer high-level resistance) is not established. Objectives: To characterize the early bactericidal activity (EBA) of high-dose isoniazid in patients with tuberculosis caused by katG-mutated M.tb. Methods: A5312 was a phase IIA randomized, open-label trial. Participants with tuberculosis caused by katG-mutated M.tb were randomized to receive 15 or 20 mg/kg isoniazid daily for 7 days. Daily sputum samples were collected for quantitative culture. Intensive pharmacokinetic sampling was performed on Day 6. Data were pooled across all A5312 participants for analysis (drug-sensitive, inhA-mutated, and katG-mutated M.tb). EBA was determined using nonlinear mixed-effects modeling. Measurements and Main Results: Of 80 treated participants, 21 had katG-mutated M.tb. Isoniazid pharmacokinetics were best described by a two-compartment model with an effect of NAT2 acetylator phenotype on clearance. Model-derived maximum concentration and area under the concentration-time curve in the 15 and 20 mg/kg groups were 15.0 and 22.1 mg/L and 57.6 and 76.8 mg ⋅ h/L, respectively. Isoniazid bacterial kill was described using an effect compartment and a sigmoidal maximum efficacy relationship. Isoniazid potency against katG-mutated M.tb was approximately 10-fold lower than in inhA-mutated M.tb. The highest dose of 20 mg/kg did not demonstrate measurable EBA, except against a subset of slow NAT2 acetylators (who experienced the highest concentrations). There were no grade 3 or higher drug-related adverse events. Conclusions: This study found negligible bactericidal activity of high-dose isoniazid (15-20 mg/kg) in the majority of participants with tuberculosis caused by katG-mutated M.tb. Clinical trial registered with www.clinicaltrials.gov (NCT01936831).


Subject(s)
Antitubercular Agents , Bacterial Proteins , Isoniazid , Mutation , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Isoniazid/pharmacokinetics , Isoniazid/administration & dosage , Isoniazid/pharmacology , Isoniazid/therapeutic use , Humans , Antitubercular Agents/pharmacokinetics , Antitubercular Agents/administration & dosage , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Female , Male , Tuberculosis, Multidrug-Resistant/drug therapy , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Adult , Middle Aged , Bacterial Proteins/genetics , Catalase/genetics , Dose-Response Relationship, Drug , Aged , Microbial Sensitivity Tests
7.
Antimicrob Agents Chemother ; 68(4): e0156223, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38376228

ABSTRACT

The combination of bedaquiline, pretomanid, and linezolid (BPaL) has become a preferred regimen for treating multidrug- and extensively drug-resistant tuberculosis (TB). However, treatment-limiting toxicities of linezolid and reports of emerging bedaquiline and pretomanid resistance necessitate efforts to develop new short-course oral regimens. We recently found that the addition of GSK2556286 increases the bactericidal and sterilizing activity of BPa-containing regimens in a well-established BALB/c mouse model of tuberculosis. Here, we used this model to evaluate the potential of new regimens combining bedaquiline or the more potent diarylquinoline TBAJ-587 with GSK2556286 and the DprE1 inhibitor TBA-7371, all of which are currently in early-phase clinical trials. We found the combination of bedaquiline, GSK2556286, and TBA-7371 to be more active than the first-line regimen and nearly as effective as BPaL in terms of bactericidal and sterilizing activity. In addition, we found that GSK2556286 and TBA-7371 were as effective as pretomanid and the novel oxazolidinone TBI-223 when either drug pair was combined with TBAJ-587 and that the addition of GSK2556286 increased the bactericidal activity of the TBAJ-587, pretomanid, and TBI-223 combination. We conclude that GSK2556286 and TBA-7371 have the potential to replace pretomanid, an oxazolidinone, or both components, in combination with bedaquiline or TBAJ-587.


Subject(s)
Mycobacterium tuberculosis , Nitroimidazoles , Oxazolidinones , Tuberculosis, Multidrug-Resistant , Tuberculosis , Animals , Mice , Diarylquinolines/pharmacology , Diarylquinolines/therapeutic use , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , Linezolid/pharmacology , Linezolid/therapeutic use , Tuberculosis/drug therapy , Nitroimidazoles/pharmacology , Oxazolidinones/pharmacology , Oxazolidinones/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy
8.
Antimicrob Agents Chemother ; 67(12): e0078923, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37966090

ABSTRACT

Contezolid is a new oxazolidinone with in vitro and in vivo activity against Mycobacterium tuberculosis comparable to that of linezolid. Pre-clinical and clinical safety studies suggest it may be less toxic than linezolid, making contezolid a potential candidate to replace linezolid in the treatment of drug-resistant tuberculosis. We evaluated the dose-ranging activity of contezolid, alone and in combination with bedaquiline and pretomanid, and compared it with linezolid at similar doses, in an established BALB/c mouse model of tuberculosis. Contezolid had an MIC of 1 µg/mL, similar to linezolid, and exhibited similar bactericidal activity in mice. Contezolid-resistant mutants selected in vitro had 32- to 64-fold increases in contezolid MIC and harbored mutations in the mce3R gene. These mutants did not display cross-resistance to linezolid. Our results indicate that contezolid has the potential to replace linezolid in regimens containing bedaquiline and pretomanid and likely other regimens.


Subject(s)
Mycobacterium tuberculosis , Oxazolidinones , Tuberculosis, Multidrug-Resistant , Tuberculosis , Animals , Mice , Linezolid/pharmacology , Linezolid/therapeutic use , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Disease Models, Animal , Oxazolidinones/pharmacology , Oxazolidinones/therapeutic use , Diarylquinolines/pharmacology , Diarylquinolines/therapeutic use , Tuberculosis/drug therapy , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology
9.
Tuberculosis (Edinb) ; 142: 102377, 2023 09.
Article in English | MEDLINE | ID: mdl-37531864

ABSTRACT

The Many Hosts of Mycobacteria (MHM) meeting series brings together basic scientists, clinicians and veterinarians to promote robust discussion and dissemination of recent advances in our knowledge of numerous mycobacterial diseases, including human and bovine tuberculosis (TB), nontuberculous mycobacteria (NTM) infection, Hansen's disease (leprosy), Buruli ulcer and Johne's disease. The 9th MHM conference (MHM9) was held in July 2022 at The Ohio State University (OSU) and centered around the theme of "Confounders of Mycobacterial Disease." Confounders can and often do drive the transmission of mycobacterial diseases, as well as impact surveillance and treatment outcomes. Various confounders were presented and discussed at MHM9 including those that originate from the host (comorbidities and coinfections) as well as those arising from the environment (e.g., zoonotic exposures), economic inequality (e.g. healthcare disparities), stigma (a confounder of leprosy and TB for millennia), and historical neglect (a confounder in Native American Nations). This conference report summarizes select talks given at MHM9 highlighting recent research advances, as well as talks regarding the historic and ongoing impact of TB and other infectious diseases on Native American Nations, including those in Southwestern Alaska where the regional TB incidence rate is among the highest in the Western hemisphere.


Subject(s)
Coinfection , Mycobacterium Infections, Nontuberculous , Mycobacterium tuberculosis , Tuberculosis, Bovine , Animals , Cattle , Humans , Nontuberculous Mycobacteria , Mycobacterium Infections, Nontuberculous/microbiology
10.
Antimicrob Agents Chemother ; 67(7): e0048123, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37338374

ABSTRACT

Administration of tuberculosis preventive therapy (TPT) to individuals with latent tuberculosis infection is an important facet of global tuberculosis control. The use of long-acting injectable (LAI) drug formulations may simplify and shorten regimens for this indication. Rifapentine and rifabutin have antituberculosis activity and physiochemical properties suitable for LAI formulation, but there are limited data available for determining the target exposure profiles required for efficacy in TPT regimens. The objective of this study was to determine exposure-activity profiles of rifapentine and rifabutin to inform development of LAI formulations for TPT. We used a validated paucibacillary mouse model of TPT in combination with dynamic oral dosing of both drugs to simulate and understand exposure-activity relationships to inform posology for future LAI formulations. This work identified several LAI-like exposure profiles of rifapentine and rifabutin that, if achieved by LAI formulations, could be efficacious as TPT regimens and thus can serve as experimentally determined targets for novel LAI formulations of these drugs. We present novel methodology to understand the exposure-response relationship and inform the value proposition for investment in development of LAI formulations that have utility beyond latent tuberculosis infection.


Subject(s)
Latent Tuberculosis , Rifabutin , Animals , Mice , Rifabutin/therapeutic use , Antitubercular Agents/therapeutic use , Latent Tuberculosis/drug therapy , Latent Tuberculosis/prevention & control , Rifampin/therapeutic use
11.
bioRxiv ; 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37090528

ABSTRACT

Administration of tuberculosis preventive therapy (TPT) to individuals with latent tuberculosis infection is an important facet of global tuberculosis control. The use of long-acting injectable (LAI) drug formulations may simplify and shorten regimens for this indication. Rifapentine and rifabutin have anti-tuberculosis activity and physiochemical properties suitable for LAI formulation, but there are limited data available for determining the target exposure profiles required for efficacy in TPT regimens. The objective of this study was to determine exposure-activity profiles of rifapentine and rifabutin to inform development of LAI formulations for TPT. We utilized a validated paucibacillary mouse model of TPT in combination with dynamic oral dosing of both drugs to simulate and understand exposure-activity relationships to inform posology for future LAI formulations. This work identified several LAI-like exposure profiles of rifapentine and rifabutin that, if achieved by LAI formulations, could be efficacious as TPT regimens and thus can serve as experimentally-determined targets for novel LAI formulations of these drugs. We present novel methodology to understand the exposure-response relationship and inform the value proposition for investment in development of LAI formulations that has utility beyond latent tuberculosis infection.

12.
Antimicrob Agents Chemother ; 67(4): e0003523, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36920217

ABSTRACT

A regimen comprised of bedaquiline (BDQ, or B), pretomanid, and linezolid (BPaL) is the first oral 6-month regimen approved by the U.S. Food and Drug Administration and recommended by the World Health Organization for the treatment of extensively drug-resistant tuberculosis. We used a well-established BALB/c mouse model of tuberculosis to evaluate the treatment-shortening potential of replacing bedaquiline with either of two new, more potent diarylquinolines, TBAJ-587 and TBAJ-876, in early clinical trials. We also evaluated the effect of replacing linezolid with a new oxazolidinone, TBI-223, exhibiting a larger safety margin with respect to mitochondrial toxicity in preclinical studies. Replacing bedaquiline with TBAJ-587 at the same 25-mg/kg dose significantly reduced the proportion of mice relapsing after 2 months of treatment, while replacing linezolid with TBI-223 at the same 100-mg/kg dose did not significantly change the proportion of mice relapsing. Replacing linezolid or TBI-223 with sutezolid in combination with TBAJ-587 and pretomanid significantly reduced the proportion of mice relapsing. In combination with pretomanid and TBI-223, TBAJ-876 at 6.25 mg/kg was equipotent to TBAJ-587 at 25 mg/kg. We conclude that replacement of bedaquiline with these more efficacious and potentially safer diarylquinolines and replacement of linezolid with potentially safer and at least as efficacious oxazolidinones in the clinically successful BPaL regimen may lead to superior regimens capable of treating both drug-susceptible and drug-resistant TB more effectively and safely.


Subject(s)
Nitroimidazoles , Oxazolidinones , Tuberculosis, Multidrug-Resistant , Tuberculosis , Animals , Mice , Diarylquinolines/pharmacology , Diarylquinolines/therapeutic use , Antitubercular Agents/therapeutic use , Linezolid/therapeutic use , Tuberculosis/drug therapy , Nitroimidazoles/pharmacology , Nitroimidazoles/therapeutic use , Oxazolidinones/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy
14.
ACS Infect Dis ; 9(2): 221-238, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36606559

ABSTRACT

Mycobacterium tuberculosis cytochrome bd quinol oxidase (cyt bd), the alternative terminal oxidase of the respiratory chain, has been identified as playing a key role during chronic infection and presents a putative target for the development of novel antitubercular agents. Here, we report confirmation of successful heterologous expression of M. tuberculosis cytochrome bd. The heterologous M. tuberculosis cytochrome bd expression system was used to identify a chemical series of inhibitors based on the 2-aryl-quinolone pharmacophore. Cytochrome bd inhibitors displayed modest efficacy in M. tuberculosis growth suppression assays together with a bacteriostatic phenotype in time-kill curve assays. Significantly, however, inhibitor combinations containing our front-runner cyt bd inhibitor CK-2-63 with either cyt bcc-aa3 inhibitors (e.g., Q203) and/or adenosine triphosphate (ATP) synthase inhibitors (e.g., bedaquiline) displayed enhanced efficacy with respect to the reduction of mycobacterium oxygen consumption, growth suppression, and in vitro sterilization kinetics. In vivo combinations of Q203 and CK-2-63 resulted in a modest lowering of lung burden compared to treatment with Q203 alone. The reduced efficacy in the in vivo experiments compared to in vitro experiments was shown to be a result of high plasma protein binding and a low unbound drug exposure at the target site. While further development is required to improve the tractability of cyt bd inhibitors for clinical evaluation, these data support the approach of using small-molecule inhibitors to target multiple components of the branched respiratory chain of M. tuberculosis as a combination strategy to improve therapeutic and pharmacokinetic/pharmacodynamic (PK/PD) indices related to efficacy.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Quinolones , Antitubercular Agents/pharmacology , Cytochromes/antagonists & inhibitors , Electron Transport Complex IV/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Quinolones/pharmacology
15.
Clin Infect Dis ; 75(Suppl 4): S510-S516, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36410384

ABSTRACT

A key component of global tuberculosis (TB) control is the treatment of latent TB infection. The use of long-acting technologies to administer TB preventive treatment has the potential to significantly improve the delivery and impact of this important public health intervention. For example, an ideal long-acting treatment could consist of a single dose that could be administered in the clinic (ie, a "1-shot cure" for latent TB). Interest in long-acting formulations for TB preventive therapy has gained considerable traction in recent years. This article presents an overview of the specific considerations and current preclinical advancements relevant for the development of long-acting technologies of TB drugs for treatment of latent infection, including attributes of target product profiles, suitability of drugs for long-acting formulations, ongoing research efforts, and translation to clinical studies.


Subject(s)
Latent Tuberculosis , Tuberculosis , Humans , Latent Tuberculosis/drug therapy , Latent Tuberculosis/prevention & control , Tuberculosis/drug therapy , Tuberculosis/prevention & control , Antibiotic Prophylaxis , Ambulatory Care Facilities , Public Health
16.
Nat Commun ; 13(1): 5992, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36220877

ABSTRACT

Tuberculosis is a major global cause of both mortality and financial burden mainly in low and middle-income countries. Given the significant and ongoing rise of drug-resistant strains of Mycobacterium tuberculosis within the clinical setting, there is an urgent need for the development of new, safe and effective treatments. Here the development of a drug-like series based on a fused dihydropyrrolidino-pyrimidine scaffold is described. The series has been developed against M. tuberculosis lysyl-tRNA synthetase (LysRS) and cellular studies support this mechanism of action. DDD02049209, the lead compound, is efficacious in mouse models of acute and chronic tuberculosis and has suitable physicochemical, pharmacokinetic properties and an in vitro safety profile that supports further development. Importantly, preliminary analysis using clinical resistant strains shows no pre-existing clinical resistance towards this scaffold.


Subject(s)
Lysine-tRNA Ligase , Mycobacterium tuberculosis , Tuberculosis , Animals , Lysine-tRNA Ligase/chemistry , Lysine-tRNA Ligase/genetics , Lysine-tRNA Ligase/pharmacology , Mice , Mycobacterium tuberculosis/genetics , Tuberculosis/drug therapy
17.
Microbiol Spectr ; 10(5): e0245121, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36106881

ABSTRACT

Staphylococcus aureus is an important cause of various infections in humans, including bacteremia, skin and soft tissue infections, and infections associated with implanted medical devices. The emergence of hospital- and community-acquired methicillin-resistant Staphylococcus aureus (MRSA) underscores the urgent and unmet need to develop novel, safe, and effective antibiotics against these multidrug-resistant clinical isolates. Oxazolidinone antibiotics such as linezolid have excellent oral bioavailability and provide coverage against MRSA infections. However, their widespread and long-term use is often limited by adverse effects, especially myelosuppression. TBI-223 is a novel oxazolidinone with potentially reduced myelosuppression, compared to linezolid, but its efficacy against MRSA infections is unknown. Therefore, the preclinical efficacy of TBI-223 (80 and 160 mg/kg twice daily) was compared with that of linezolid (40 and 80 mg/kg twice daily) and sham treatment in mouse models of MRSA bacteremia, skin wound infection, and orthopedic-implant-associated infection. The dosage was selected based on mouse pharmacokinetic analysis of both linezolid and TBI-223, as well as measurement of the MICs. In all three models, TBI-223 and linezolid had comparable dose-dependent efficacies in reducing bacterial burden and disease severity, compared with sham-treated control mice. Taken together, these findings indicate that TBI-223 represents a novel oxazolidinone antibiotic that may provide an additional option against MRSA infections. Future studies in larger animal models and clinical trials are warranted to translate these findings to humans. IMPORTANCE Staphylococcus aureus is the predominant cause of bloodstream, skin, and bone infections in humans. Resistance to commonly used antibiotics is a growing concern, making it more difficult to treat staphylococcal infections. Use of the oxazolidinone antibiotic linezolid against resistant strains is hindered by high rates of adverse reactions during prolonged therapy. Here, a new oxazolidinone named TBI-223 was tested against S. aureus in three mouse models of infection, i.e., bloodstream infection, skin infection, and bone infection. We found that TBI-223 was as effective as linezolid in these three models. Previous data suggest that TBI-223 has a better safety profile than linezolid. Taken together, these findings indicate that this new agent may provide an additional option against MRSA infections. Future studies in larger animal models and clinical trials are warranted to translate these findings to humans.


Subject(s)
Bacteremia , Methicillin-Resistant Staphylococcus aureus , Oxazolidinones , Staphylococcal Infections , Animals , Mice , Acetamides/pharmacology , Acetamides/therapeutic use , Anti-Bacterial Agents/adverse effects , Bacteremia/drug therapy , Linezolid/adverse effects , Microbial Sensitivity Tests , Oxazolidinones/adverse effects , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus
18.
ACS Infect Dis ; 8(8): 1627-1636, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35916356

ABSTRACT

The rise of antibiotic-resistant Mycobacterium tuberculosis and non-tuberculous mycobacterial infections has placed ever-increasing importance on discovering new antibiotics to treat these diseases. Recently, a new penem, T405, was discovered to have strong antimicrobial activity against M. tuberculosis and Mycobacteroides abscessus. Here, a penem library of C2 side-chain variants was synthesized, and their antimicrobial activities were evaluated against M. tuberculosis H37Rv and M. abscessus ATCC 19977. Several new penems with antimicrobial activity stronger than the standard-of-care carbapenem antibiotics were identified with some candidates improving on the activity of the lead compound, T405. Moreover, many candidates showed little or no increase in the minimum inhibitory concentration in the presence of serum compared to the highly protein-bound T405. The penems with the strongest activity identified in this study were then biochemically characterized by reaction with the representative l,d-transpeptidase LdtMt2 and the representative penicillin-binding protein d,d-carboxypeptidase DacB2.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Humans , Meropenem , Structure-Activity Relationship
19.
Antimicrob Agents Chemother ; 66(6): e0013222, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35607978

ABSTRACT

As a result of a high-throughput compound screening campaign using Mycobacterium tuberculosis-infected macrophages, a new drug candidate for the treatment of tuberculosis has been identified. GSK2556286 inhibits growth within human macrophages (50% inhibitory concentration [IC50] = 0.07 µM), is active against extracellular bacteria in cholesterol-containing culture medium, and exhibits no cross-resistance with known antitubercular drugs. In addition, it has shown efficacy in different mouse models of tuberculosis (TB) and has an adequate safety profile in two preclinical species. These features indicate a compound with a novel mode of action, although still not fully defined, that is effective against both multidrug-resistant (MDR) or extensively drug-resistant (XDR) and drug-sensitive (DS) M. tuberculosis with the potential to shorten the duration of treatment in novel combination drug regimens. (This study has been registered at ClinicalTrials.gov under identifier NCT04472897).


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Animals , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Macrophages , Mice , Microbial Sensitivity Tests , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/drug therapy
20.
Antimicrob Agents Chemother ; 66(6): e0053622, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35638855

ABSTRACT

Mycobacteroides abscessus (Mab) is an emerging environmental microbe that causes chronic lung disease in patients with compromised lung function such as cystic fibrosis and bronchiectasis. It is intrinsically resistant to most antibiotics, therefore there are only few antibiotics that can be repurposed to treat Mab disease. Although current recommendations require daily intake of multiple antibiotics for more than a year, cure rate is low and often associated with significant adverse events. Here, we describe in vivo efficacy of T405, a recently discovered ß-lactam antibiotic of the penem subclass, in a mouse model of pulmonary Mab infection. Imipenem, one of the standard-of-care drugs to treat Mab disease, and also a ß-lactam antibiotic from a chemical class similar to T405, was included as a comparator. Probenecid was included with both T405 and imipenem to reduce the rate of their renal clearance. T405 exhibited bactericidal activity against Mab from the onset of treatment and reduced Mab lung burden at a rate similar to that exhibited by imipenem. The MIC of T405 against Mab was unaltered after 4 weeks of exposure to T405 in the lungs of mice. Using an in vitro assay, we also demonstrate that T405 in combination with imipenem, cefditoren or avibactam exhibits synergism against Mab. Additionally, we describe a scheme for synthesis and purification of T405 on an industrial scale. These attributes make T405 a promising candidate for further preclinical assessment to treat Mab disease.


Subject(s)
Imipenem , Mycobacterium Infections, Nontuberculous , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cephalosporins , Humans , Imipenem/pharmacology , Imipenem/therapeutic use , Meropenem/therapeutic use , Mice , Microbial Sensitivity Tests , Mycobacterium Infections, Nontuberculous/drug therapy , beta-Lactams/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL