Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 87(4): 1052-5, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14622134

ABSTRACT

As a normal consequence of aging, men experience a significant decline in androgen levels. Although the neural consequences of age-related androgen depletion remain unclear, recent evidence suggests a link between low androgen levels and the development of Alzheimer's disease (AD). Here, we test the hypothesis that androgens act as endogenous modulators of beta-amyloid protein (Abeta) levels. To investigate this possibility, brain and plasma levels of Abeta were measured in male rats with varying hormonal conditions. Depletion of endogenous sex steroid hormones via gonadectomy (GDX) resulted in increased brain levels of Abeta in comparison to gonadally intact male rats. This GDX-induced increase in Abeta levels was reversed by DHT supplementation, demonstrating a functional role for androgens in modulating brain levels of Abeta. These findings suggest that age-related androgen depletion may result in accumulation of Abeta in the male brain and thereby act as a risk factor for the development of AD.


Subject(s)
Amyloid beta-Peptides/metabolism , Androgens/physiology , Brain/drug effects , Brain/metabolism , Amyloid beta-Peptides/blood , Androgens/administration & dosage , Animals , Dihydrotestosterone/administration & dosage , Drug Implants , Estradiol/administration & dosage , Hormone Replacement Therapy , Male , Orchiectomy , Rats , Rats, Sprague-Dawley , Receptors, Androgen/metabolism , Septal Nuclei/cytology , Septal Nuclei/drug effects , Septal Nuclei/metabolism
2.
Biophys Chem ; 91(3): 281-304, 2001 Jul 24.
Article in English | MEDLINE | ID: mdl-11551440

ABSTRACT

The Thorneley and Lowe kinetic model for nitrogenase catalysis was developed in the early to mid 1980s, and has been of value in accounting for many aspects of nitrogenase catalysis. It has also been of value by providing a model for predicting new catalytic behavior. Since its original publication, new results have been obtained and have been successfully incorporated into the model. However, the computer program used for nitrogenase simulations has not been generally available. Using kinetic schemes and assumptions previously outlined by Thorneley and Lowe, we report attempts to duplicate the original T&L kinetic simulation for Klebsiella pneumoniae nitrogenase catalysis using an updated simulation based on the MATHEMATICA programming format, which makes it more user-friendly and more readily available. Comparisons of our simulations with the original T&L simulations are generally in agreement, but in some cases serious discrepancy is observed. Possible reasons for the differences are discussed. In addition to duplicating the original T&L model, we report effects of updating it by including information that has come to light subsequent to its original publication.


Subject(s)
Klebsiella pneumoniae/enzymology , Nitrogenase/metabolism , Adenosine Triphosphate/chemistry , Catalysis , Iron/chemistry , Kinetics , Models, Chemical , Molybdenum/chemistry , Phosphates/chemistry , Software
3.
Biochim Biophys Acta ; 1543(1): 24-35, 2000 Nov 30.
Article in English | MEDLINE | ID: mdl-11087938

ABSTRACT

Steady state kinetic measurements are reported for nitrogenase from Azotobacter vinelandii (Av) and Clostridium pasteurianum (Cp) under a variety of conditions, using dithionite as reductant. The specific activities of Av1 and Cp1 are determined as functions of Av2:Av1 and Cp2:Cp1, respectively, at component protein ratios from 0.4 to 50, and conform to a simple hyperbolic rate law for the interaction of Av2 with Av1 and Cp2 with Cp1. The specific activities of Av2 and Cp2 are also measured as a function of increasing Av1 and Cp1 concentrations, producing 'MoFe inhibition' at large MoFe:Fe ratios. When the rate of product formation under MoFe inhibited conditions is re-plotted as increasing Av2:Av1 or Cp2:Cp1 ratios, sigmoidal kinetic behavior is observed, suggesting that the rate constants in the Thorneley and Lowe (T&L) model are more dependent upon the oxidation level of MoFe protein than previously suspected [R.N.F. Thorneley, D.J. Lowe, Biochem. J. 224 (1984) 887-894], at least when applied to Av and Cp. Calculation of Hill coefficients gave values of 1.7-1.9, suggesting a highly cooperative Fe-MoFe protein interaction in both Av and Cp nitrogenase catalysis. The T&L model lacks analytical solutions [R.N.F. Thorneley, D.J. Lowe, Biochem. J. 215 (1983) 393-404], so the ease of its application to experimental data is limited. To facilitate the study of steady state kinetic data for H(2) evolution, analytical equations are derived from a different mechanism for nitrogenase activity, similar to that of Bergersen and Turner [Biochem. J. 131 (1973) 61-75]. This alternative cooperative model assumes that two Fe proteins interact with one MoFe protein active site. The derived rate laws for this mechanism were fitted to the observed sigmoidal behavior for low Fe:MoFe ratios (<0.4), as well as to the commonly observed hyperbolic behavior for high values of Fe:MoFe for both Av and Cp.


Subject(s)
Iron/chemistry , Models, Chemical , Molybdenum/chemistry , Nitrogenase/chemistry , Nonheme Iron Proteins/chemistry , Binding Sites , Catalysis , Clostridium , Enzyme Activation , Kinetics , Klebsiella pneumoniae , Molybdoferredoxin/chemistry , Nonheme Iron Proteins/antagonists & inhibitors
4.
Biochim Biophys Acta ; 1543(1): 36-46, 2000 Nov 30.
Article in English | MEDLINE | ID: mdl-11087939

ABSTRACT

Nitrogenase activity for Clostridium pasteurianum (Cp) at a Cp2:Cp1 ratio of 1.0 and Azotobacter vinelandii (Av) at Av2:Av1 protein ratios (R) of 1, 4 and 10 is determined as a function of increasing MoFe protein concentration from 0.01 to 5 microM. The rates of ethylene and hydrogen evolution for these ratios and concentrations were measured to determine the effect of extreme dilution on nitrogenase activity. The experimental results show three distinct types of kinetic behavior: (1) a finite intercept along the concentration axis (approximately 0.05 microM MoFe); (2) a non-linear increase in the rate of product formation with increasing protein concentration (approximately 0.2 microM MoFe) and (3) a limiting linear rate of product formation at high protein concentrations (>0.4 microM MoFe). The data are fitted using the following rate equation derived from a mechanism for which two Fe proteins interact cooperatively with a single half of the MoFe protein. (see equation) The equation predicts that the cubic dependence in MoFe protein gives rise to the non-linear rate of product formation (the dilution effect) at very low MoFe protein concentrations. The equation also predicts that the rate will vary linearly at high MoFe protein concentrations with increasing MoFe protein concentration. That these limiting predictions are in accord with the experimental results suggests that either two Fe proteins interact cooperatively with a single half of the MoFe protein, or that the rate constants in the Thorneley and Lowe model are more dependent upon the redox state of MoFe protein than previously suspected [R.N. Thornley and D. J. Lowe, Biochem. J. 224 (1984) 887-894]. Previous Klebsiella pneumoniae and Azotobacter chroococcum dilution results were reanalyzed using the above equation. Results from all of these nitrogenases are consistent and suggest that cooperativity is a fundamental kinetic aspect of nitrogenase catalysis.


Subject(s)
Clostridium/enzymology , Nitrogenase/chemistry , Adenosine Triphosphate/chemistry , Bacterial Proteins/chemistry , Catalysis , Ethylenes/chemistry , Kinetics , Models, Chemical , Molybdoferredoxin/chemistry , Nonheme Iron Proteins/chemistry
5.
J Biol Chem ; 275(50): 39307-12, 2000 Dec 15.
Article in English | MEDLINE | ID: mdl-11005818

ABSTRACT

The nitrogenase-catalyzed H(2) evolution and acetylene-reduction reactions using Ti(III) and dithionite (DT) as reductants were examined and compared under a variety of conditions. Ti(III) is known to make the all-ferrous Fe protein ([Fe(4)S(4)](0)) and lowers the amount of ATP hydrolyzed during nitrogenase catalysis by approximately 2-fold. Here we further investigate this behavior and present results consistent with the Fe protein in the [Fe(4)S(4)](0) redox state transferring two electrons ([Fe(4)S(4)](2+)/[Fe(4)S(4)](0)) per MoFe protein interaction using Ti(III) but transferring only one electron ([Fe(4)S(4)](2+)/[Fe(4)S(4)](1+)) using DT. MoFe protein specific activity was measured as a function of Fe:MoFe protein ratio for both a one- and a two-electron transfer reaction, and nearly identical curves were obtained. However, Fe protein specific activity curves as a function of MoFe:Fe protein ratio showed two distinct reactivity patterns. With DT as reductant, typical MoFe inhibition curves were obtained for operation of the [Fe(4)S(4)](2+)/[Fe(4)S(4)](1+) redox couple, but with Ti(III) as reductant the [Fe(4)S(4)](2+)/[Fe(4)S(4)](0) redox couple was functional and MoFe inhibition was not observed at high MoFe:Fe protein ratios. With Ti(III) as reductant, nitrogenase catalysis produced hyperbolic curves, yielding a V(max) for the Fe protein specific activity of about 3200 nmol of H(2) min(-1) mg(-1) Fe protein, significantly higher than for reactions conducted with DT as reductant. Lag phase experiments (Hageman, R. V., and Burris, R. H. (1978) Proc. Natl. Acad. Sci. U. S. A. 75, 2699-2702) were carried out at MoFe:Fe protein ratios of 100 and 300 using both DT and Ti(III). A lag phase was observed for DT but, with Ti(III) product formation, began immediately and remained linear for over 30 min. Activity measurements using Av-Cp heterologous crosses were examined using both DT and Ti(III) as reductants to compare the reactivity of the [Fe(4)S(4)](2+)/[Fe(4)S(4)](1+) and [Fe(4)S(4)](2+)/[Fe(4)S(4)](0) redox couples and both were inactive. The results are discussed in terms of the Fe protein transferring two electrons per MoFe protein encounter using the [Fe(4)S(4)](2+)/[Fe(4)S(4)](0) redox couple with Ti(III) as reductant.


Subject(s)
Ferrous Compounds/chemistry , Ferrous Compounds/metabolism , Nitrogenase/metabolism , Azotobacter/metabolism , Catalysis , Citric Acid/pharmacology , Dithionite/pharmacology , Electron Transport , Hydrogen/metabolism , Iron-Sulfur Proteins , Kinetics , Molybdoferredoxin , Oxidation-Reduction , Time Factors , Titanium/pharmacology
6.
J Inorg Biochem ; 78(4): 371-81, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10857919

ABSTRACT

Nitrogenase-catalyzed reactions using Ti(III) were examined under a wide variety of conditions to determine the suitability of Ti(III) to serve as a general nitrogenase reductant. Solutions prepared from H2-reduced TiCl3, aluminum-reduced TiCl3, TiCl2, evaporated TiCl3 from an HCl, solution, and TiF3 were evaluated as reductants. Three general types of reactivity were observed. The first showed that, below Ti(III) concentrations of about 0.50 mM, nitrogenase catalysis utilized Ti(III) in a first-order reaction. The second showed that, above 0.50 mM, the rate of nitrogenase catalysis was zero order in Ti(III), indicating the enzyme was saturated with this reductant. Above 2.0-5.0 mM, nitrogenase catalysis was inhibited by Ti(III) depending on the titanium source used for solution preparation. This inhibition was investigated and found to be independent of the buffer type and pH, while high salt and citrate concentrations caused moderate inhibition. [Ti(IV)] above 2.0-3.0 mM and [Ti(III)] above about 5.0 mM were inhibitory. ATP/2e values were 4-5 for [Ti(III)] at or below 1.0-2.0 mM, 2.0 from 5.0 to 7.0 mM Ti(III) where nitrogenase is not inhibited, and 2.0 above 7.0 mM Ti(III) where severe inhibition occurs. For nitrogenase-catalyzed reactions using Ti(III) as reductant, the potential of the solution changes with time as the Ti(III)/Ti(IV) ratio changes. From the change in the rate of product formation (Ti(III) disappearance) with change in solution potential, the rate of nitrogenase catalysis was determined as a function of solution potential. From such experiments, a midpoint turnover potential of -480 mV was determined for nitrogenase catalysis with an associated n = 2 value.


Subject(s)
Azotobacter vinelandii/enzymology , Nitrogenase/metabolism , Titanium/metabolism , Adenosine Triphosphate/metabolism , Citric Acid/pharmacology , Dose-Response Relationship, Drug , Hydrogen-Ion Concentration , Ions , Kinetics , Models, Chemical , Time Factors
7.
Biochemistry ; 38(43): 14279-85, 1999 Oct 26.
Article in English | MEDLINE | ID: mdl-10572002

ABSTRACT

The amount of MgATP hydrolyzed per pair of electrons transferred (ATP/2e) during nitrogenase catalysis (1.0 atm N(2), 30 degrees C) using titanium(III) citrate (Ti(III)) as reductant was measured and compared to the same reaction using dithionite (DT). ATP/2e values near 2.0 for Ti(III) and 5.0 for DT indicate that nitrogenase has a much lower ATP requirement using Ti(III) as reductant. Using reduced Azotobacter vinelandii flavoprotein (AvFlpH(2)), a possible in vivo nitrogenase reductant, ATP/2e values near 2.0 were also observed. When the reaction was conducted using Ti(III) under N(2), 5% CO in N(2), Ar, 5% CO in Ar, or acetylene, ATP/2e values near 2.0 were also observed. With Ti(III) as reductant, ATP/2e values near 2.0 were measured as a function of temperature, Fe:MoFe protein ratio, and MoFe:Fe protein ratio, in contrast to measured values of 4.0-25 when DT is used under the same conditions. Both Ti(III) and AvFlpH(2) are capable of forming the [Fe(4)S(4)](0) cluster state of the Fe protein whereas DT is not, suggesting that ATP/2e values near 2.0 arise from operation of the [Fe(4)S(4)](2+)/[Fe(4)S(4)](0) redox couple with hydrolysis of only 2 ATPs per pair of electrons transferred. Additional experiments showed that ATP/2e values near 2. 0 correlated with slower rates of product formation and that faster rates of product formation produced ATP/2e values near 5.0. ATP/2e values of 5.0 are consistent with the operation of the [Fe(4)S(4)](2+)/[Fe(4)S(4)](1+) redox couple while ATP/2e values of 2.0 could arise from operation of the [Fe(4)S(4)](2+)/[Fe(4)S(4)](0) redox couple. These results suggest that two distinct Fe protein redox couples may be functional during nitrogenase catalysis and that the efficiency of ATP utilization depends on which of these redox couples is dominant.


Subject(s)
Adenosine Triphosphate/metabolism , Nitrogenase/metabolism , Oxidoreductases , Reducing Agents/pharmacology , Catalysis , Dithionite/metabolism , Dithionite/pharmacology , Electrons , Ferrous Compounds/chemistry , Ferrous Compounds/metabolism , Flavoproteins/metabolism , Flavoproteins/pharmacology , Hydrolysis , Kinetics , Molybdoferredoxin/metabolism , Nitrogenase/chemistry , Oxidation-Reduction , Reducing Agents/metabolism , Temperature , Titanium/chemistry , Titanium/metabolism , Titanium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...