Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 57(25): 9204-9213, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37294854

ABSTRACT

It is known that the association of soil organic matter (SOM) with iron minerals limits carbon mobilization and degradation in aerobic soils and sediments. However, the efficacy of iron mineral protection mechanisms under reducing soil conditions, where Fe(III)-bearing minerals may be used as terminal electron acceptors, is poorly understood. Here, we quantified the extent to which iron mineral protection inhibits mineralization of organic carbon in reduced soils by adding dissolved 13C-glucuronic acid, a 57Fe-ferrihydrite-13C-glucuronic acid coprecipitate, or pure 57Fe-ferrihydrite to anoxic soil slurries. In tracking the re-partitioning and transformation of 13C-glucuronic acid and native SOM, we find that coprecipitation suppresses mineralization of 13C-glucuronic acid by 56% after 2 weeks (at 25 °C) and decreases to 27% after 6 weeks, owing to ongoing reductive dissolution of the coprecipitated 57Fe-ferrihydrite. Addition of both dissolved and coprecipitated 13C-glucuronic acid resulted in increased native SOM mineralization, but the reduced bioavailability of the coprecipitated versus dissolved 13C-glucuronic acid decreased the priming effect by 35%. In contrast, the addition of pure 57Fe-ferrihydrite resulted in negligible changes in native SOM mineralization. Our results show that iron mineral protection mechanisms are relevant for understanding the mobilization and degradation of SOM under reducing soil conditions.


Subject(s)
Ferric Compounds , Soil , Oxidation-Reduction , Iron , Minerals , Carbon
3.
Sci Total Environ ; 816: 151567, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-34762956

ABSTRACT

In freshwater wetlands, redox interfaces characterized by circumneutral pH, steep gradients in O2, and a continual supply of Fe(II) form ecological niches favorable to microaerophilic iron(II) oxidizing bacteria (FeOB) and the formation of flocs; associations of (a)biotic mineral phases, microorganisms, and (microbially-derived) organic matter. On the volcanic island of Iceland, wetlands are replenished with Fe-rich surface-, ground- and springwater. Combined with extensive drainage of lowland wetlands, which forms artificial redox gradients, accumulations of bright orange (a)biotically-derived Fe-rich flocs are common features of Icelandic wetlands. These loosely consolidated flocs are easily mobilized, and, considering the proximity of Iceland's lowland wetlands to the coast, are likely to contribute to the suspended sediment load transported to coastal waters. To date, however, little is known regarding (Fe) mineral and elemental composition of the flocs. In this study, flocs from wetlands (n = 16) across Iceland were analyzed using X-ray diffraction and spectroscopic techniques (X-ray absorption and 57Fe Mössbauer) combined with chemical extractions and (electron) microscopy to comprehensively characterize floc mineral, elemental, and structural composition. All flocs were rich in Fe (229-414 mg/g), and floc Fe minerals comprised primarily ferrihydrite and nano-crystalline lepidocrocite, with a single floc sample containing nano-crystalline goethite. Floc mineralogy also included Fe in clay minerals and appreciable poorly-crystalline aluminosilicates, most likely allophane and/or imogolite. Microscopy images revealed that floc (bio)organics largely comprised mineral encrusted microbially-derived components (i.e. sheaths, stalks, and EPS) indicative of common FeOB Leptothrix spp. and Gallionella spp. Trace element contents in the flocs were in the low µg/g range, however nearly all trace elements were extracted with hydroxylamine hydrochloride. This finding suggests that the (a)biotic reductive dissolution of floc Fe minerals, plausibly driven by exposure to the varied geochemical conditions of coastal waters following floc mobilization, could lead to the release of associated trace elements. Thus, the flocs should be considered vectors for transport of Fe, organic carbon, and trace elements from Icelandic wetlands to coastal waters.


Subject(s)
Trace Elements , Ferric Compounds , Iceland , Iron , Minerals , Oxidation-Reduction , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...