Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
medRxiv ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39371126

ABSTRACT

Cellular senescence increases with age and contributes to age-related declines and pathologies. We identified circulating biomarkers of senescence associated with diverse clinical traits in humans to facilitate future non-invasive assessment of individual senescence burden and efficacy testing of novel senotherapeutics. Using a novel nanoparticle-based proteomic workflow, we profiled the senescence-associated secretory phenotype (SASP) in monocytes and examined these proteins in plasma samples (N = 1060) from the Baltimore Longitudinal Study of Aging (BLSA). Machine learning models trained on monocyte SASP associated with several age-related phenotypes in a test cohort, including body fat composition, blood lipids, inflammation, and mobility-related traits, among others. Notably, a subset of SASP-based predictions, including a 'high impact' SASP panel that predicts age- and obesity-related clinical traits, were validated in InCHIANTI, an independent aging cohort. These results demonstrate the clinical relevance of the circulating SASP and identify relevant biomarkers of senescence that could inform future clinical studies.

2.
FASEB J ; 38(17): e70013, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39225365

ABSTRACT

Articular cartilage phenotypic homeostasis is crucial for life-long joint function, but the underlying cellular and molecular mechanisms governing chondrocyte stability remain poorly understood. Here, we show that the protein tyrosine phosphatase SHP2 is differentially expressed in articular cartilage (AC) and growth plate cartilage (GPC) and that it negatively regulates cell proliferation and cartilage phenotypic program. Postnatal SHP2 deletion in Prg4+ AC chondrocytes increased articular cellularity and thickness, whereas SHP2 deletion in Acan+ pan-chondrocytes caused excessive GPC chondrocyte proliferation and led to joint malformation post-puberty. These observations were verified in mice and in cultured chondrocytes following treatment with the SHP2 PROTAC inhibitor SHP2D26. Further mechanistic studies indicated that SHP2 negatively regulates SOX9 stability and transcriptional activity by influencing SOX9 phosphorylation and promoting its proteasome degradation. In contrast to published work, SHP2 ablation in chondrocytes did not impact IL-1-evoked inflammation responses, and SHP2's negative regulation of SOX9 could be curtailed by genetic or chemical SHP2 inhibition, suggesting that manipulating SHP2 signaling has translational potential for diseases of cartilage dyshomeostasis.


Subject(s)
Cartilage, Articular , Chondrocytes , Osteoarthritis , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , SOX9 Transcription Factor , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Animals , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Chondrocytes/metabolism , Chondrocytes/pathology , Mice , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Osteoarthritis/metabolism , Osteoarthritis/pathology , Cell Proliferation , Cells, Cultured , Mice, Inbred C57BL , Mice, Knockout , Male
3.
Biology (Basel) ; 12(10)2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37887011

ABSTRACT

Cellular senescence is a state of irreversible growth arrest with profound phenotypic changes, including the senescence-associated secretory phenotype (SASP). Senescent cell accumulation contributes to aging and many pathologies including chronic inflammation, type 2 diabetes, cancer, and neurodegeneration. Targeted removal of senescent cells in preclinical models promotes health and longevity, suggesting that the selective elimination of senescent cells is a promising therapeutic approach for mitigating a myriad of age-related pathologies in humans. However, moving senescence-targeting drugs (senotherapeutics) into the clinic will require therapeutic targets and biomarkers, fueled by an improved understanding of the complex and dynamic biology of senescent cell populations and their molecular profiles, as well as the mechanisms underlying the emergence and maintenance of senescence cells and the SASP. Advances in mass spectrometry-based proteomic technologies and workflows have the potential to address these needs. Here, we review the state of translational senescence research and how proteomic approaches have added to our knowledge of senescence biology to date. Further, we lay out a roadmap from fundamental biological discovery to the clinical translation of senotherapeutic approaches through the development and application of emerging proteomic technologies, including targeted and untargeted proteomic approaches, bottom-up and top-down methods, stability proteomics, and surfaceomics. These technologies are integral for probing the cellular composition and dynamics of senescent cells and, ultimately, the development of senotype-specific biomarkers and senotherapeutics (senolytics and senomorphics). This review aims to highlight emerging areas and applications of proteomics that will aid in exploring new senescent cell biology and the future translation of senotherapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL