Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
Integr Comp Biol ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839599

ABSTRACT

Water plays a notable role in the ecology of most terrestrial organisms due to the risks associated with water loss. Specifically, water loss in terrestrial animals happens through evaporation across respiratory tissues or epidermis. Amphibians are ideal systems for studying how abiotic factors impact water loss since their bodies often respond quickly to environmental changes. While the effect of temperature on water loss is well known across many taxa, we are still learning how temperature in combination with humidity or water availability affects water loss. Here, we tested how standing water sources (availability) and temperature (26 and 36°C) together affect water loss in anuran amphibians using a Bayesian framework. We also present a conceptual model for considering how water availability and temperature may interact, resulting in body mass changes. After accounting for phylogenetic and time autocorrelation, we determined how different variables (water loss and uptake rates, temperature, and body size) affect body mass in three species of tropical frogs (Rhinella marina, Phyllobates terribilis, and Xenopus tropicalis). We found that all variables impacted body mass changes with greater similarities between P. terribilis and X. tropicalis, but only temperature showed a notable effect in P. terribilis. Furthermore, we describe how the behavior of P. terribilis might affect its water budget. This study shows how organisms might manage water budgets across different environments and is important for developing our models of evaporative water loss and species distributions.

2.
Dev Biol ; 514: 66-77, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851558

ABSTRACT

The ways in which animals sense the world changes throughout development. For example, young of many species have limited visual capabilities, but still make social decisions, likely based on information gathered through other sensory modalities. Poison frog tadpoles display complex social behaviors that have been suggested to rely on vision despite a century of research indicating tadpoles have poorly-developed visual systems relative to adults. Alternatively, other sensory modalities, such as the lateral line system, are functional at hatching in frogs and may guide social decisions while other sensory systems mature. Here, we examined development of the mechanosensory lateral line and visual systems in tadpoles of the mimic poison frog (Ranitomeya imitator) that use vibrational begging displays to stimulate egg feeding from their mothers. We found that tadpoles hatch with a fully developed lateral line system. While begging behavior increases with development, ablating the lateral line system inhibited begging in pre-metamorphic tadpoles, but not in metamorphic tadpoles. We also found that the increase in begging and decrease in reliance on the lateral line co-occurs with increased retinal neural activity and gene expression associated with eye development. Using the neural tracer neurobiotin, we found that axonal innervations from the eye to the brain proliferate during metamorphosis, with few retinotectal connections in recently-hatched tadpoles. We then tested visual function in a phototaxis assay and found tadpoles prefer darker environments. The strength of this preference increased with developmental stage, but eyes were not required for this behavior, possibly indicating a role for the pineal gland. Together, these data suggest that tadpoles rely on different sensory modalities for social interactions across development and that the development of sensory systems in socially complex poison frog tadpoles is similar to that of other frog species.

3.
Genome Biol Evol ; 16(6)2024 06 04.
Article in English | MEDLINE | ID: mdl-38753031

ABSTRACT

Genome size varies greatly across the tree of life and transposable elements are an important contributor to this variation. Among vertebrates, amphibians display the greatest variation in genome size, making them ideal models to explore the causes and consequences of genome size variation. However, high-quality genome assemblies for amphibians have, until recently, been rare. Here, we generate a high-quality genome assembly for the dyeing poison frog, Dendrobates tinctorius. We compare this assembly to publicly available frog genomes and find evidence for both large-scale conserved synteny and widespread rearrangements between frog lineages. Comparing conserved orthologs annotated in these genomes revealed a strong correlation between genome size and gene size. To explore the cause of gene-size variation, we quantified the location of transposable elements relative to gene features and find that the accumulation of transposable elements in introns has played an important role in the evolution of gene size in D. tinctorius, while estimates of insertion times suggest that many insertion events are recent and species-specific. Finally, we carry out population-scale mobile-element sequencing and show that the diversity and abundance of transposable elements in poison frog genomes can complicate genotyping from repetitive element sequence anchors. Our results show that transposable elements have clearly played an important role in the evolution of large genome size in D. tinctorius. Future studies are needed to fully understand the dynamics of transposable element evolution and to optimize primer or bait design for cost-effective population-level genotyping in species with large, repetitive genomes.


Subject(s)
Anura , DNA Transposable Elements , Evolution, Molecular , Genome Size , Genome , Animals , Anura/genetics , Poison Frogs
4.
MicroPubl Biol ; 20242024.
Article in English | MEDLINE | ID: mdl-38596360

ABSTRACT

Ant behavior relies on a collection of natural products, from following trail pheromones during foraging to warding off potential predators. How nervous systems sense these compounds to initiate a behavioral response remains unclear. Here, we used Caenorhabditis elegans chemotaxis assays to investigate how ant compounds are detected by heterospecific nervous systems. We found that C. elegans avoid extracts of the pavement ant ( Tetramorium immigrans ) and either osm-9 or tax-4 ion channels are required for this response. These experiments were conducted in an undergraduate laboratory course, demonstrating that new insights into interspecies interactions can be generated through genuine research experiences in a classroom setting.

5.
bioRxiv ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38260330

ABSTRACT

Shifts in microbiome community composition can have large effects on host health. It is therefore important to understand how perturbations, like those caused by the introduction of exogenous chemicals, modulate microbiome community composition. In poison frogs within the family Dendrobatidae, the skin microbiome is exposed to the alkaloids that the frogs sequester from their diet and use for defense. Given the demonstrated antimicrobial effects of these poison frog alkaloids, these compounds may be structuring the skin microbial community. To test this, we first characterized microbial communities from chemically defended and closely related non-defended frogs from Ecuador. Then we conducted a laboratory experiment to monitor the effect of the alkaloid decahydroquinoline (DHQ) on the microbiome of a single frog species. In both the field and lab experiments, we found that alkaloid-exposed microbiomes are more species rich and phylogenetically diverse, with an increase in rare taxa. To better understand the strain-specific behavior in response to alkaloids, we cultured microbial strains from poison frog skin and found the majority of strains exhibited either enhanced growth or were not impacted by the addition of DHQ. Additionally, stable isotope tracing coupled to nanoSIMS suggests that some of these strains are able to metabolize DHQ. Taken together, these data suggest that poison frog chemical defenses open new niches for skin-associated microbes with specific adaptations, including the likely metabolism of alkaloids, that enable their survival in this toxic environment. This work helps expand our understanding of how exposure to exogenous compounds like alkaloids can impact host microbiomes.

6.
Mol Biol Evol ; 40(10)2023 10 04.
Article in English | MEDLINE | ID: mdl-37791477

ABSTRACT

Amphibians are ideal for studying visual system evolution because their biphasic (aquatic and terrestrial) life history and ecological diversity expose them to a broad range of visual conditions. Here, we evaluate signatures of selection on visual opsin genes across Neotropical anurans and focus on three diurnal clades that are well-known for the concurrence of conspicuous colors and chemical defense (i.e., aposematism): poison frogs (Dendrobatidae), Harlequin toads (Bufonidae: Atelopus), and pumpkin toadlets (Brachycephalidae: Brachycephalus). We found evidence of positive selection on 44 amino acid sites in LWS, SWS1, SWS2, and RH1 opsin genes, of which one in LWS and two in RH1 have been previously identified as spectral tuning sites in other vertebrates. Given that anurans have mostly nocturnal habits, the patterns of selection revealed new sites that might be important in spectral tuning for frogs, potentially for adaptation to diurnal habits and for color-based intraspecific communication. Furthermore, we provide evidence that SWS2, normally expressed in rod cells in frogs and some salamanders, has likely been lost in the ancestor of Dendrobatidae, suggesting that under low-light levels, dendrobatids have inferior wavelength discrimination compared to other frogs. This loss might follow the origin of diurnal activity in dendrobatids and could have implications for their behavior. Our analyses show that assessments of opsin diversification in across taxa could expand our understanding of the role of sensory system evolution in ecological adaptation.


Subject(s)
Opsins , Poisons , Animals , Opsins/genetics , Phylogeny , Rod Opsins/genetics
7.
PLoS One ; 18(8): e0289361, 2023.
Article in English | MEDLINE | ID: mdl-37590232

ABSTRACT

Electroporation is an increasingly common technique used for exogenous gene expression in live animals, but protocols are largely limited to traditional laboratory organisms. The goal of this protocol is to test in vivo electroporation techniques in a diverse array of tadpole species. We explore electroporation efficiency in tissue-specific cells of five species from across three families of tropical frogs: poison frogs (Dendrobatidae), cryptic forest/poison frogs (Aromobatidae), and glassfrogs (Centrolenidae). These species are well known for their diverse social behaviors and intriguing physiologies that coordinate chemical defenses, aposematism, and/or tissue transparency. Specifically, we examine the effects of electrical pulse and injection parameters on species- and tissue-specific transfection of plasmid DNA in tadpoles. After electroporation of a plasmid encoding green fluorescent protein (GFP), we found strong GFP fluorescence within brain and muscle cells that increased with the amount of DNA injected and electrical pulse number. We discuss species-related challenges, troubleshooting, and outline ideas for improvement. Extending in vivo electroporation to non-model amphibian species could provide new opportunities for exploring topics in genetics, behavior, and organismal biology.


Subject(s)
Electroporation Therapies , Electroporation , Animals , DNA , Plasmids/genetics , Transfection , Anura/genetics , Green Fluorescent Proteins/genetics
8.
bioRxiv ; 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-37292748

ABSTRACT

Motor function is a critical aspect of social signaling in a wide range of taxa. The transcription factor FoxP2 is well studied in the context of vocal communication in humans, mice, and songbirds, but its role in regulating social signaling in other vertebrate taxa is unclear. We examined the distribution and activity of FoxP2-positive neurons in tadpoles of the mimetic poison frog (Ranitomeya imitator). In this species, tadpoles are reared in isolated plant nurseries and are aggressive to other tadpoles. Mothers provide unfertilized egg meals to tadpoles that perform a begging display by vigorously vibrating back and forth. We found that FoxP2 is widely distributed in the tadpole brain and parallels the brain distribution in mammals, birds, and fishes. We then tested the hypothesis that FoxP2-positive neurons would have differential activity levels in begging or aggression contexts compared to non-social controls. We found that FoxP2-positive neurons showed increased activation in the striatum and cerebellum only during begging. Overall, this work suggests a generalizable role for FoxP2 in social signaling across terrestrial vertebrates.

9.
bioRxiv ; 2023 May 11.
Article in English | MEDLINE | ID: mdl-37131676

ABSTRACT

Reliably capturing transient animal behavior in the field and laboratory remains a logistical and financial challenge, especially for small ectotherms. Here, we present a camera system that is affordable, accessible, and suitable to monitor small, cold-blooded animals historically overlooked by commercial camera traps, such as small amphibians. The system is weather-resistant, can operate offline or online, and allows collection of time-sensitive behavioral data in laboratory and field conditions with continuous data storage for up to four weeks. The lightweight camera can also utilize phone notifications over Wi-Fi so that observers can be alerted when animals enter a space of interest, enabling sample collection at proper time periods. We present our findings, both technological and scientific, in an effort to elevate tools that enable researchers to maximize use of their research budgets. We discuss the relative affordability of our system for researchers in South America, which is home to the largest population of ectotherm diversity.

10.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-37008729

ABSTRACT

Many ant species are equipped with chemical defenses, although how these compounds impact nervous system function is unclear. Here, we examined the utility of Caenorhabditis elegans chemotaxis assays for investigating how ant chemical defense compounds are detected by heterospecific nervous systems. We found that C. elegans respond to extracts from the invasive Argentine Ant ( Linepithema humile ) and the osm-9 ion channel is required for this response. Divergent strains varied in their response to L. humile extracts, suggesting genetic variation underlying chemotactic responses. These experiments were conducted by an undergraduate laboratory course, highlighting how C. elegans chemotaxis assays in a classroom setting can provide genuine research experiences and reveal new insights into interspecies interactions.

11.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-36824381

ABSTRACT

Tadpoles display preferences for different environments but the sensory modalities that govern these choices are not well understood. Here, we examined light preferences and associated sensory mechanisms of albino and wild-type Xenopus laevis tadpoles. We found that albino tadpoles spent more time in darker environments compared to the wild type, although they showed no differences in overall activity. This preference persisted when the tadpoles had their optic nerve severed or pineal glands removed, suggesting these sensory systems alone are not necessary for phototaxis. These experiments were conducted by an undergraduate laboratory course, highlighting how X. laevis tadpole behavior assays in a classroom setting can reveal new insights into animal behavior.

12.
Elife ; 122023 Dec 19.
Article in English | MEDLINE | ID: mdl-38206862

ABSTRACT

Alkaloids are important bioactive molecules throughout the natural world, and in many animals they serve as a source of chemical defense against predation. Dendrobatid poison frogs bioaccumulate alkaloids from their diet to make themselves toxic or unpalatable to predators. Despite the proposed roles of plasma proteins as mediators of alkaloid trafficking and bioavailability, the responsible proteins have not been identified. We use chemical approaches to show that a ~50 kDa plasma protein is the principal alkaloid-binding molecule in blood of poison frogs. Proteomic and biochemical studies establish this plasma protein to be a liver-derived alkaloid-binding globulin (ABG) that is a member of the serine-protease inhibitor (serpin) family. In addition to alkaloid-binding activity, ABG sequesters and regulates the bioavailability of 'free' plasma alkaloids in vitro. Unexpectedly, ABG is not related to saxiphilin, albumin, or other known vitamin carriers, but instead exhibits sequence and structural homology to mammalian hormone carriers and amphibian biliverdin-binding proteins. ABG represents a new small molecule binding functionality in serpin proteins, a novel mechanism of plasma alkaloid transport in poison frogs, and more broadly points toward serpins acting as tunable scaffolds for small molecule binding and transport across different organisms.


Subject(s)
Alkaloids , Globulins , Serpins , Animals , Poison Frogs , Serpins/metabolism , Proteomics , Anura/physiology , Globulins/metabolism , Blood Proteins , Alkaloids/chemistry , Mammals/metabolism
13.
PLoS One ; 17(12): e0276331, 2022.
Article in English | MEDLINE | ID: mdl-36454945

ABSTRACT

The ability to acquire chemical defenses through the diet has evolved across several major taxa. Chemically defended organisms may need to balance chemical defense acquisition and nutritional quality of prey items. However, these dietary preferences and potential trade-offs are rarely considered in the framework of diet-derived defenses. Poison frogs (Family Dendrobatidae) acquire defensive alkaloids from their arthropod diet of ants and mites, although their dietary preferences have never been investigated. We conducted prey preference assays with the Dyeing Poison frog (Dendrobates tinctorius) to test the hypothesis that alkaloid load and prey traits influence frog dietary preferences. We tested size preferences (big versus small) within each of four prey groups (ants, beetles, flies, and fly larvae) and found that frogs preferred interacting with smaller prey items of the fly and beetle groups. Frog taxonomic prey preferences were also tested as we experimentally increased their chemical defense load by feeding frogs decahydroquinoline, an alkaloid compound similar to those naturally found in their diet. Contrary to our expectations, overall preferences did not change during alkaloid consumption, as frogs across groups preferred fly larvae over other prey. Finally, we assessed the protein and lipid content of prey items and found that small ants have the highest lipid content while large fly larvae have the highest protein content. Our results suggest that consideration of toxicity and prey nutritional value are important factors in understanding the evolution of acquired chemical defenses and niche partitioning.


Subject(s)
Alkaloids , Antineoplastic Agents , Ants , Coleoptera , Poisons , Animals , Anura , Diet , Larva , Lipids
14.
Elife ; 112022 11 15.
Article in English | MEDLINE | ID: mdl-36377473

ABSTRACT

Sex differences in vertebrate spatial abilities are typically interpreted under the adaptive specialization hypothesis, which posits that male reproductive success is linked to larger home ranges and better navigational skills. The androgen spillover hypothesis counters that enhanced male spatial performance may be a byproduct of higher androgen levels. Animal groups that include species where females are expected to outperform males based on life-history traits are key for disentangling these hypotheses. We investigated the association between sex differences in reproductive strategies, spatial behavior, and androgen levels in three species of poison frogs. We tracked individuals in natural environments to show that contrasting parental sex roles shape sex differences in space use, where the sex performing parental duties shows wider-ranging movements. We then translocated frogs from their home areas to test their navigational performance and found that the caring sex outperformed the non-caring sex only in one out of three species. In addition, males across species displayed more explorative behavior than females and androgen levels correlated with explorative behavior and homing accuracy. Overall, we reveal that poison frog reproductive strategies shape movement patterns but not necessarily navigational performance. Together this work suggests that prevailing adaptive hypotheses provide an incomplete explanation of sex differences in spatial abilities.


Subject(s)
Anura , Behavior, Animal , Animals , Female , Male , Androgens , Anura/physiology , Sex Factors , Behavior, Animal/physiology
15.
Proc Natl Acad Sci U S A ; 119(44): e2210114119, 2022 11.
Article in English | MEDLINE | ID: mdl-36279441

ABSTRACT

American bullfrog (Rana castesbeiana) saxiphilin (RcSxph) is a high-affinity "toxin sponge" protein thought to prevent intoxication by saxitoxin (STX), a lethal bis-guanidinium neurotoxin that causes paralytic shellfish poisoning (PSP) by blocking voltage-gated sodium channels (NaVs). How specific RcSxph interactions contribute to STX binding has not been defined and whether other organisms have similar proteins is unclear. Here, we use mutagenesis, ligand binding, and structural studies to define the energetic basis of Sxph:STX recognition. The resultant STX "recognition code" enabled engineering of RcSxph to improve its ability to rescue NaVs from STX and facilitated discovery of 10 new frog and toad Sxphs. Definition of the STX binding code and Sxph family expansion among diverse anurans separated by ∼140 My of evolution provides a molecular basis for understanding the roles of toxin sponge proteins in toxin resistance and for developing novel proteins to sense or neutralize STX and related PSP toxins.


Subject(s)
Neurotoxins , Saxitoxin , Animals , Saxitoxin/genetics , Ligands , Guanidine , Carrier Proteins/metabolism , Rana catesbeiana
16.
ACS Meas Sci Au ; 2(5): 475-484, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36281295

ABSTRACT

Poison frogs are well-known for their fascinating ability to store alkaloids in their skin as chemical defense against predators. Chemical methods used to study these alkaloids are limited by requirements for euthanasia or stress during sampling. Here, we demonstrate sensitive and biocompatible alkaloid detection and monitoring in vivo using the MasSpec Pen, a handheld, noninvasive chemical detection device coupled to a mass spectrometer. The MasSpec Pen allowed rapid (<15 s), gentle, and consecutive molecular analysis without harm or undue stress to the animals. Through a month-long alkaloid-feeding study with the dyeing poison frog, we observed temporal dynamics of chemical sequestration in vivo by comparing frogs fed the alkaloid decahydroquinoline (DHQ) to vehicle-fed frogs. We also demonstrate the feasibility of the MasSpec Pen for the untargeted detection of rich alkaloid profiles from skin extracts of the Diablito poison frog, collected from two distinct geographical populations in Ecuador. The results obtained in this study demonstrate the utility of the MasSpec Pen for direct, rapid, and biocompatible analysis of poison frog alkaloids.

17.
PLoS One ; 17(3): e0264540, 2022.
Article in English | MEDLINE | ID: mdl-35275922

ABSTRACT

Poison frogs bioaccumulate alkaloids for chemical defense from their arthropod diet. Although many alkaloids are accumulated without modification, some poison frog species can metabolize pumiliotoxin (PTX 251D) into the more potent allopumiliotoxin (aPTX 267A). Despite extensive research characterizing the chemical arsenal of poison frogs, the physiological mechanisms involved in the sequestration and metabolism of individual alkaloids remain unclear. We first performed a feeding experiment with the Dyeing poison frog (Dendrobates tinctorius) to ask if this species can metabolize PTX 251D into aPTX 267A and what gene expression changes are associated with PTX 251D exposure in the intestines, liver, and skin. We found that D. tinctorius can metabolize PTX 251D into aPTX 267A, and that PTX 251D exposure changed the expression level of genes involved in immune system function and small molecule metabolism and transport. To better understand the functional significance of these changes in gene expression, we then conducted a series of high-throughput screens to determine the molecular targets of PTX 251D and identify potential proteins responsible for metabolism of PTX 251D into aPTX 267A. Although screens of PTX 251D binding human voltage-gated ion channels and G-protein coupled receptors were inconclusive, we identified human CYP2D6 as a rapid metabolizer of PTX 251D in a cytochrome P450 screen. Furthermore, a CYP2D6-like gene had increased expression in the intestines of animals fed PTX, suggesting this protein may be involved in PTX metabolism. These results show that individual alkaloids can modify gene expression across tissues, including genes involved in alkaloid metabolism. More broadly, this work suggests that specific alkaloid classes in wild diets may induce physiological changes for targeted accumulation and metabolism.


Subject(s)
Alkaloids , Arthropods , Poisons , Alkaloids/pharmacology , Animals , Anura/genetics , Cytochrome P-450 CYP2D6
18.
Horm Behav ; 140: 105109, 2022 04.
Article in English | MEDLINE | ID: mdl-35066329

ABSTRACT

Across species, individuals within a population differ in their level of boldness in social encounters with conspecifics. This boldness phenotype is often stable across both time and social context (e.g., reproductive versus agonistic encounters). Various neural and hormonal mechanisms have been suggested as underlying these stable phenotypic differences, which are often also described as syndromes, personalities, and coping styles. Most studies examining the neuroendocrine mechanisms associated with boldness examine subjects after they have engaged in a social interaction, whereas baseline neural activity that may predispose behavioral variation is understudied. The present study tests the hypotheses that physical characteristics, steroid hormone levels, and baseline variation in Ile3-vasopressin (VP, a.k.a., Arg8-vasotocin) signaling predispose boldness during social encounters. Boldness in agonistic and reproductive contexts was extensively quantified in male green anole lizards (Anolis carolinensis), an established research organism for social behavior research that provides a crucial comparison group to investigations of birds and mammals. We found high stability of boldness across time, and between agonistic and reproductive contexts. Next, immunofluorescence was used to colocalize VP neurons with phosphorylated ribosomal protein S6 (pS6), a proxy marker of neural activity. Vasopressin-pS6 colocalization within the paraventricular and supraoptic nuclei of the hypothalamus was inversely correlated with boldness of aggressive behaviors, but not of reproductive behaviors. Our findings suggest that baseline vasopressin release, rather than solely context-dependent release, plays a role in predisposing individuals toward stable levels of displayed aggression toward conspecifics by inhibiting behavioral output in these contexts.


Subject(s)
Lizards , Aggression/physiology , Animals , Humans , Lizards/physiology , Male , Mammals/metabolism , Social Behavior , Vasopressins , Vasotocin/metabolism
19.
J Exp Zool A Ecol Integr Physiol ; 337(1): 88-98, 2022 01.
Article in English | MEDLINE | ID: mdl-33929097

ABSTRACT

Is the brain bipotential or is sex-typical behavior determined during development? Thirty years of research in whiptail lizards transformed the field of behavioral neuroscience to show the brain is indeed bipotential, producing behaviors along a spectrum of male-typical and female-typical behavior via a parliamentary system of neural networks and not a predetermined program of constrained behavioral output. The unusual clade of whiptail lizards gave these insights as there are several parthenogenetic all-female species that display both male-typical and female-typical sexual behavior. These descendant species exist alongside their ancestors, allowing a unique perspective into how brain-behavior relationships evolve. In this review, we celebrate the over 40-year career of David Crews, beginning with the story of how he established whiptails as a model system through serendipitous behavioral observations and ending with advice to young scientists formulating their own questions. In between these personal notes, we discuss the discoveries that integrated hormones, neural activity, and gene expression to provide transformative insights into how brains function and reshaped our understanding of sexuality.


Subject(s)
Lizards , Animals , Biological Evolution , Brain , Female , Male , Parthenogenesis , Sexual Behavior, Animal
20.
J Exp Biol ; 225(2)2022 01 15.
Article in English | MEDLINE | ID: mdl-34940881

ABSTRACT

Many animals exhibit complex navigation over different scales and environments. Navigation studies in amphibians have largely focused on species with life histories that require accurate spatial movements, such as territorial poison frogs and migratory pond-breeding amphibians that show fidelity to mating sites. However, other amphibian species have remained relatively understudied, leaving open the possibility that well-developed navigational abilities are widespread. Here, we measured short-term space use in non-territorial, non-migratory cane toads (Rhinella marina) in their native range in French Guiana. After establishing site fidelity, we tested their ability to return home following translocations of 500 and 1000 m. Toads were able to travel in straight trajectories back to home areas, suggesting navigational abilities similar to those observed in amphibians with more complex spatial behavior. These observations break with the current paradigm of amphibian navigation and suggest that navigational abilities may be widely shared among amphibians.


Subject(s)
Amphibians , Spatial Behavior , Animals , Bufo marinus
SELECTION OF CITATIONS
SEARCH DETAIL
...