Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
2.
J Clin Invest ; 133(14)2023 07 17.
Article En | MEDLINE | ID: mdl-37463454

Mutations in HNRNPH2 cause an X-linked neurodevelopmental disorder with features that include developmental delay, motor function deficits, and seizures. More than 90% of patients with hnRNPH2 have a missense mutation within or adjacent to the nuclear localization signal (NLS) of hnRNPH2. Here, we report that hnRNPH2 NLS mutations caused reduced interaction with the nuclear transport receptor Kapß2 and resulted in modest cytoplasmic accumulation of hnRNPH2. We generated 2 knockin mouse models with human-equivalent mutations in Hnrnph2 as well as Hnrnph2-KO mice. Knockin mice recapitulated clinical features of the human disorder, including reduced survival in male mice, impaired motor and cognitive functions, and increased susceptibility to audiogenic seizures. In contrast, 2 independent lines of Hnrnph2-KO mice showed no detectable phenotypes. Notably, KO mice had upregulated expression of Hnrnph1, a paralog of Hnrnph2, whereas knockin mice failed to upregulate Hnrnph1. Thus, genetic compensation by Hnrnph1 may counteract the loss of hnRNPH2. These findings suggest that HNRNPH2-related disorder may be driven by a toxic gain of function or a complex loss of HNRNPH2 function with impaired compensation by HNRNPH1. The knockin mice described here are an important resource for preclinical studies to assess the therapeutic benefit of gene replacement or knockdown of mutant hnRNPH2.


Neurodevelopmental Disorders , Animals , Humans , Male , Mice , Disease Models, Animal , Mutation , Mutation, Missense , Seizures/genetics
3.
Nat Commun ; 13(1): 2306, 2022 04 28.
Article En | MEDLINE | ID: mdl-35484142

Missense variants in RNA-binding proteins (RBPs) underlie a spectrum of disease phenotypes, including amyotrophic lateral sclerosis, frontotemporal dementia, and inclusion body myopathy. Here, we present ten independent families with a severe, progressive muscular dystrophy, reminiscent of oculopharyngeal muscular dystrophy (OPMD) but of much earlier onset, caused by heterozygous frameshift variants in the RBP hnRNPA2/B1. All disease-causing frameshift mutations abolish the native stop codon and extend the reading frame, creating novel transcripts that escape nonsense-mediated decay and are translated to produce hnRNPA2/B1 protein with the same neomorphic C-terminal sequence. In contrast to previously reported disease-causing missense variants in HNRNPA2B1, these frameshift variants do not increase the propensity of hnRNPA2 protein to fibrillize. Rather, the frameshift variants have reduced affinity for the nuclear import receptor karyopherin ß2, resulting in cytoplasmic accumulation of hnRNPA2 protein in cells and in animal models that recapitulate the human pathology. Thus, we expand the phenotypes associated with HNRNPA2B1 to include an early-onset form of OPMD caused by frameshift variants that alter its nucleocytoplasmic transport dynamics.


Amyotrophic Lateral Sclerosis , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Muscular Dystrophy, Oculopharyngeal , Amyotrophic Lateral Sclerosis/genetics , Animals , Frameshift Mutation , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Heterozygote , Humans , Muscular Dystrophy, Oculopharyngeal/genetics
4.
Mil Med ; 187(3-4): e322-e328, 2022 03 28.
Article En | MEDLINE | ID: mdl-33928388

INTRODUCTION: The purpose of this review is to provide an overview of the etiology, pathology, and treatments for celiac disease (CD), as well as to provide context as to how CD impacts the U.S. military. MATERIALS AND METHODS: To conduct this review, the authors surveyed recent epidemiology and immunology literature in order to provide a detailed summary of the current understanding of CD, its diagnosis, and the real-world impacts within the Department of Defense (DoD). RESULTS: We described the gluten proteins and both the immune response in CD. We further describe the underlying genetic risk factors and diagnosis and pathogenesis of the disease and conclude the review with a discussion of how current DoD regulations impact U.S. military readiness. CONCLUSION: Celiac disease (CD) is an autoimmune disorder that results in damage to the small intestine. Ingestion of gluten in a CD patient is usually followed by villous atrophy in the small intestine, often along with other gastrointestinal symptoms. Around 1% of patients diagnosed with CD can experience complications if gluten-free diet is not followed, including intestinal lymphoma and hyposplenism. Therefore, a patient showing possible symptoms should discuss the diagnostic process with their healthcare providers to ensure adequate understanding of serological and genetic tests along with the histological examination of intestinal biopsy. Patients should seek consults with registered dietitians to structure their diets appropriately. Considering the prevalence and incidence of CD and gluten intolerances are increasing, the military should consider providing gluten-free Meals Ready-to-Eat as an option for all service members. Given the retention of service members with CD, subsequent admission of personnel with mild CD that does not affect the duties will allow the DoD access to a growing population of fully capable service members with critical technical skills who are eager to serve the USA.


Celiac Disease , Military Personnel , Biopsy , Celiac Disease/complications , Celiac Disease/diagnosis , Celiac Disease/epidemiology , Diet, Gluten-Free , Glutens , Humans , United States/epidemiology
5.
JCI Insight ; 6(14)2021 07 22.
Article En | MEDLINE | ID: mdl-34291734

Mutations in HNRNPA1 encoding heterogeneous nuclear ribonucleoprotein (hnRNP) A1 are a rare cause of amyotrophic lateral sclerosis (ALS) and multisystem proteinopathy (MSP). hnRNPA1 is part of the group of RNA-binding proteins (RBPs) that assemble with RNA to form RNPs. hnRNPs are concentrated in the nucleus and function in pre-mRNA splicing, mRNA stability, and the regulation of transcription and translation. During stress, hnRNPs, mRNA, and other RBPs condense in the cytoplasm to form stress granules (SGs). SGs are implicated in the pathogenesis of (neuro-)degenerative diseases, including ALS and inclusion body myopathy (IBM). Mutations in RBPs that affect SG biology, including FUS, TDP-43, hnRNPA1, hnRNPA2B1, and TIA1, underlie ALS, IBM, and other neurodegenerative diseases. Here, we characterize 4 potentially novel HNRNPA1 mutations (yielding 3 protein variants: *321Eext*6, *321Qext*6, and G304Nfs*3) and 2 known HNRNPA1 mutations (P288A and D262V), previously connected to ALS and MSP, in a broad spectrum of patients with hereditary motor neuropathy, ALS, and myopathy. We establish that the mutations can have different effects on hnRNPA1 fibrillization, liquid-liquid phase separation, and SG dynamics. P288A accelerated fibrillization and decelerated SG disassembly, whereas *321Eext*6 had no effect on fibrillization but decelerated SG disassembly. By contrast, G304Nfs*3 decelerated fibrillization and impaired liquid phase separation. Our findings suggest different underlying pathomechanisms for HNRNPA1 mutations with a possible link to clinical phenotypes.


Amyotrophic Lateral Sclerosis/genetics , Heterogeneous Nuclear Ribonucleoprotein A1/genetics , Muscular Atrophy, Spinal/genetics , Adolescent , Adult , Child , DNA Mutational Analysis , Female , Genetic Association Studies , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Heterozygote , Humans , Male , Middle Aged , Mutation , Pedigree , Stress Granules/metabolism , Exome Sequencing , Young Adult
6.
Front Neurol ; 11: 542733, 2020.
Article En | MEDLINE | ID: mdl-33101171

Despite the significant impact that concussion has on military service members, significant gaps remain in our understanding of the optimal diagnostic, management, and return to activity/duty criteria to mitigate the consequences of concussion. In response to these significant knowledge gaps, the US Department of Defense (DoD) and the National Collegiate Athletic Association (NCAA) partnered to form the NCAA-DoD Grand Alliance in 2014. The NCAA-DoD CARE Consortium was established with the aim of creating a national multisite research network to study the clinical and neurobiological natural history of concussion in NCAA athletes and military Service Academy cadets and midshipmen. In addition to the data collected for the larger CARE Consortium effort, the service academies have pursued military-specific lines of research relevant to operational and medical readiness associated with concussion. The purpose of this article is to describe the structure of the NCAA-DoD Grand Alliance efforts at the service academies, as well as discuss military-specific research objectives and provide an overview of progress to date. A secondary objective is to discuss the challenges associated with conducting large-scale studies in the Service Academy environment and highlight future directions for concussion research endeavors across the CARE Service Academy sites.

7.
Neural Dev ; 14(1): 6, 2019 03 12.
Article En | MEDLINE | ID: mdl-30867000

BACKGROUND: Purkinje cells play a central role in establishing the cerebellar circuit. Accordingly, disrupting Purkinje cell development impairs cerebellar morphogenesis and motor function. In the Car8wdl mouse model of hereditary ataxia, severe motor deficits arise despite the cerebellum overcoming initial defects in size and morphology. METHODS: To resolve how this compensation occurs, we asked how the loss of carbonic anhydrase 8 (CAR8), a regulator of IP3R1 Ca2+ signaling in Purkinje cells, alters cerebellar development in Car8wdl mice. Using a combination of histological, physiological, and behavioral analyses, we determined the extent to which the loss of CAR8 affects cerebellar anatomy, neuronal firing, and motor coordination during development. RESULTS: Our results reveal that granule cell proliferation is reduced in early postnatal mutants, although by the third postnatal week there is enhanced and prolonged proliferation, plus an upregulation of Sox2 expression in the inner EGL. Modified circuit patterning of Purkinje cells and Bergmann glia accompany these granule cell adjustments. We also find that although anatomy eventually normalizes, the abnormal activity of neurons and muscles persists. CONCLUSIONS: Our data show that losing CAR8 only transiently restricts cerebellar growth, but permanently damages its function. These data support two current hypotheses about cerebellar development and disease: (1) Sox2 expression may be upregulated at sites of injury and contribute to the rescue of cerebellar structure and (2) transient delays to developmental processes may precede permanent motor dysfunction. Furthermore, we characterize waddles mutant mouse morphology and behavior during development and propose a Sox2-positive, cell-mediated role for rescue in a mouse model of human motor diseases.


Ataxia/physiopathology , Biomarkers, Tumor/physiology , Cell Proliferation/physiology , Cerebellum/cytology , Cerebellum/growth & development , Gene Expression Regulation, Developmental , Homeostasis/physiology , Movement Disorders/physiopathology , Nerve Tissue Proteins/physiology , Purkinje Cells/metabolism , SOXB1 Transcription Factors/metabolism , Animals , Animals, Newborn , Behavior, Animal/physiology , Biomarkers, Tumor/deficiency , Disease Models, Animal , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/deficiency
8.
Cell ; 173(3): 677-692.e20, 2018 04 19.
Article En | MEDLINE | ID: mdl-29677512

RNA-binding proteins (RBPs) with prion-like domains (PrLDs) phase transition to functional liquids, which can mature into aberrant hydrogels composed of pathological fibrils that underpin fatal neurodegenerative disorders. Several nuclear RBPs with PrLDs, including TDP-43, FUS, hnRNPA1, and hnRNPA2, mislocalize to cytoplasmic inclusions in neurodegenerative disorders, and mutations in their PrLDs can accelerate fibrillization and cause disease. Here, we establish that nuclear-import receptors (NIRs) specifically chaperone and potently disaggregate wild-type and disease-linked RBPs bearing a NLS. Karyopherin-ß2 (also called Transportin-1) engages PY-NLSs to inhibit and reverse FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2 fibrillization, whereas Importin-α plus Karyopherin-ß1 prevent and reverse TDP-43 fibrillization. Remarkably, Karyopherin-ß2 dissolves phase-separated liquids and aberrant fibrillar hydrogels formed by FUS and hnRNPA1. In vivo, Karyopherin-ß2 prevents RBPs with PY-NLSs accumulating in stress granules, restores nuclear RBP localization and function, and rescues degeneration caused by disease-linked FUS and hnRNPA2. Thus, NIRs therapeutically restore RBP homeostasis and mitigate neurodegeneration.


Active Transport, Cell Nucleus , Prions/chemistry , RNA-Binding Proteins/chemistry , Receptors, Cytoplasmic and Nuclear/chemistry , Adult , Aged , Animals , Cytoplasm/chemistry , DNA-Binding Proteins/chemistry , Drosophila melanogaster , Female , Green Fluorescent Proteins/chemistry , HEK293 Cells , HeLa Cells , Homeostasis , Humans , Karyopherins/chemistry , Male , Middle Aged , Molecular Chaperones/chemistry , Mutation , Neurodegenerative Diseases/pathology , Protein Domains , RNA-Binding Protein EWS/chemistry , TATA-Binding Protein Associated Factors/chemistry , beta Karyopherins/chemistry
9.
Mol Cell ; 69(6): 965-978.e6, 2018 03 15.
Article En | MEDLINE | ID: mdl-29526694

Under stress, certain eukaryotic proteins and RNA assemble to form membraneless organelles known as stress granules. The most well-studied stress granule components are RNA-binding proteins that undergo liquid-liquid phase separation (LLPS) into protein-rich droplets mediated by intrinsically disordered low-complexity domains (LCDs). Here we show that stress granules include proteasomal shuttle factor UBQLN2, an LCD-containing protein structurally and functionally distinct from RNA-binding proteins. In vitro, UBQLN2 exhibits LLPS at physiological conditions. Deletion studies correlate oligomerization with UBQLN2's ability to phase-separate and form stress-induced cytoplasmic puncta in cells. Using nuclear magnetic resonance (NMR) spectroscopy, we mapped weak, multivalent interactions that promote UBQLN2 oligomerization and LLPS. Ubiquitin or polyubiquitin binding, obligatory for UBQLN2's biological functions, eliminates UBQLN2 LLPS, thus serving as a switch between droplet and disperse phases. We postulate that UBQLN2 LLPS enables its recruitment to stress granules, where its interactions with ubiquitinated substrates reverse LLPS to enable shuttling of clients out of stress granules.


Cell Cycle Proteins/metabolism , Cytoplasmic Granules/metabolism , Intrinsically Disordered Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Stress, Physiological , Ubiquitins/metabolism , Adaptor Proteins, Signal Transducing , Autophagy-Related Proteins , Binding Sites , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Female , HeLa Cells , Humans , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Models, Molecular , Protein Aggregation, Pathological , Protein Binding , Protein Conformation , Protein Domains , Protein Folding , Structure-Activity Relationship , Ubiquitins/chemistry , Ubiquitins/genetics
10.
JCI Insight ; 2(21)2017 11 02.
Article En | MEDLINE | ID: mdl-29093272

In the course of modeling the naturally occurring tumor immunity seen in patients with paraneoplastic cerebellar degeneration (PCD), we discovered an unexpectedly high threshold for breaking CD8+ cytotoxic T cell (CTL) tolerance to the PCD autoantigen, CDR2. While CDR2 expression was previously found to be strictly restricted to immune-privileged cells (cerebellum, testes, and tumors), unexpectedly we have found that T cells also express CDR2. This expression underlies inhibition of CTL activation; CTLs that respond to epithelial cells expressing CDR2 fail to respond to T cells expressing CDR2. This was a general phenomenon, as T cells presenting influenza (flu) antigen also fail to activate otherwise potent flu-specific CTLs either in vitro or in vivo. Moreover, transfer of flu peptide-pulsed T cells into flu-infected mice inhibits endogenous flu-specific CTLs. Our finding that T cells serve as a site of immune privilege, inhibiting effector CTL function, uncovers an autorepressive loop with general biologic and clinical relevance.


Antigens, Viral/immunology , Autoantigens/immunology , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/pharmacology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Animals , Autoimmune Diseases/immunology , Epithelial Cells/metabolism , HeLa Cells , Humans , Immunization , Influenza A virus , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/immunology , Nervous System Diseases/immunology , Paraneoplastic Cerebellar Degeneration
11.
Front Neurosci ; 10: 486, 2016.
Article En | MEDLINE | ID: mdl-27833527

Following damage to the adult nervous system in conditions like stroke, spinal cord injury, or traumatic brain injury, many neurons die and most of the remaining spared neurons fail to regenerate. Injured neurons fail to regrow both because of the inhibitory milieu in which they reside as well as a loss of the intrinsic growth capacity of the neurons. If we are to develop effective therapeutic interventions that promote functional recovery for the devastating injuries described above, we must not only better understand the molecular mechanisms of developmental axonal growth in hopes of re-activating these pathways in the adult, but at the same time be aware that re-activation of adult axonal growth may proceed via distinct mechanisms. With this knowledge in hand, promoting adult regeneration of central nervous system neurons can become a more tractable and realistic therapeutic endeavor.

12.
Elife ; 4: e10874, 2015 Sep 29.
Article En | MEDLINE | ID: mdl-26418744

The generation of diverse neuronal subtypes involves specification of neural progenitors and, subsequently, postmitotic neuronal differentiation, a relatively poorly understood process. Here, we describe a mechanism whereby the neurotrophic factor NGF and the transcription factor Runx1 coordinate postmitotic differentiation of nonpeptidergic nociceptors, a major nociceptor subtype. We show that the integrity of a Runx1/CBFß holocomplex is crucial for NGF-dependent nonpeptidergic nociceptor maturation. NGF signals through the ERK/MAPK pathway to promote expression of Cbfb but not Runx1 prior to maturation of nonpeptidergic nociceptors. In contrast, transcriptional initiation of Runx1 in nonpeptidergic nociceptor precursors is dependent on the homeodomain transcription factor Islet1, which is largely dispensable for Cbfb expression. Thus, an NGF/TrkA-MAPK-CBFß pathway converges with Islet1-Runx1 signaling to promote Runx1/CBFß holocomplex formation and nonpeptidergic nociceptor maturation. Convergence of extrinsic and intrinsic signals to control heterodimeric transcription factor complex formation provides a robust mechanism for postmitotic neuronal subtype specification.


Cell Differentiation , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor beta Subunit/metabolism , Nociceptors/physiology , Animals , Mice , Nerve Growth Factor/metabolism , Signal Transduction
13.
J Vis Exp ; (94)2014 Dec 09.
Article En | MEDLINE | ID: mdl-25549235

The visualization of full-length neuronal projections in embryos is essential to gain an understanding of how mammalian neuronal networks develop. Here we describe a method to label in situ a subset of dorsal root ganglion (DRG) axon projections to assess their phenotypic characteristics using several genetically manipulated mouse lines. The TrkA-positive neurons are nociceptor neurons, dedicated to the transmission of pain signals. We utilize a TrkA(taulacZ) mouse line to label the trajectories of all TrkA-positive peripheral axons in the intact mouse embryo. We further breed the TrkA(taulacZ) line onto a Bax null background, which essentially abolishes neuronal apoptosis, in order to assess growth-related questions independently of possible effects of genetic manipulations on neuronal survival. Subsequently, genetically modified mice of interest are bred with the TrkA(taulacZ)/Bax null line and are then ready for study using the techniques described herein. This presentation includes detailed information on mouse breeding plans, genotyping at the time of dissection, tissue preparation, staining and clearing to allow for visualization of full-length axonal trajectories in whole-mount preparation.


Axons/physiology , Embryo Culture Techniques/methods , Ganglia, Spinal/embryology , Neurons/cytology , Staining and Labeling/methods , Animals , Female , Ganglia, Spinal/physiology , Genetic Engineering , Genotype , Mice , Mice, Transgenic , Pregnancy , Receptor, trkA/genetics , bcl-2-Associated X Protein/genetics
14.
J Exp Med ; 211(5): 801-14, 2014 May 05.
Article En | MEDLINE | ID: mdl-24733831

Activation of intrinsic growth programs that promote developmental axon growth may also facilitate axon regeneration in injured adult neurons. Here, we demonstrate that conditional activation of B-RAF kinase alone in mouse embryonic neurons is sufficient to drive the growth of long-range peripheral sensory axon projections in vivo in the absence of upstream neurotrophin signaling. We further show that activated B-RAF signaling enables robust regenerative growth of sensory axons into the spinal cord after a dorsal root crush as well as substantial axon regrowth in the crush-lesioned optic nerve. Finally, the combination of B-RAF gain-of-function and PTEN loss-of-function promotes optic nerve axon extension beyond what would be predicted for a simple additive effect. We conclude that cell-intrinsic RAF signaling is a crucial pathway promoting developmental and regenerative axon growth in the peripheral and central nervous systems.


Axons/physiology , Central Nervous System/embryology , Central Nervous System/injuries , Nerve Regeneration/physiology , Proto-Oncogene Proteins B-raf/metabolism , Signal Transduction/physiology , Animals , Axons/enzymology , Blotting, Western , Immunohistochemistry , Mice , Mice, Transgenic , PTEN Phosphohydrolase/metabolism
16.
Cerebellum ; 11(4): 829-33, 2012 Dec.
Article En | MEDLINE | ID: mdl-22864918

Understanding how cells from different neuronal and glial lineages contribute to functional circuits has been complicated by the difficulty in tracking cells as they integrate into brain circuits. Sudarov et al. (J Neurosci 31(30):11055-11069, 2011) used a powerful genetics-based lineage marking approach to birth date ventricular zone-derived cells in the mouse cerebellum. The authors use their novel tools to elucidate the spatial and temporal dynamics of how distinct ventricular zone lineages are generated and assemble into the cerebellar microcircuitry. In this journal club, we discuss and evaluate the author's major findings.


Basic Helix-Loop-Helix Transcription Factors/genetics , Body Patterning , Cerebellum/cytology , Nerve Net/physiology , Neurons/physiology , Animals , Female , Male
17.
PLoS One ; 5(4): e10045, 2010 Apr 07.
Article En | MEDLINE | ID: mdl-20383333

Cdr2 is a tumor antigen expressed in a high percentage of breast and ovarian tumors and is the target of a naturally occurring tumor immune response in patients with paraneoplastic cerebellar degeneration, but little is known of its regulation or function in cancer cells. Here we find that cdr2 is cell cycle regulated in tumor cells with protein levels peaking in mitosis. As cells exit mitosis, cdr2 is ubiquitinated by the anaphase promoting complex/cyclosome (APC/C) and rapidly degraded by the proteasome. Previously we showed that cdr2 binds to the oncogene c-myc, and here we extend this observation to show that cdr2 and c-myc interact to synergistically regulate c-myc-dependent transcription during passage through mitosis. Loss of cdr2 leads to functional consequences for dividing cells, as they show aberrant mitotic spindle formation and impaired proliferation. Conversely, cdr2 overexpression is able to drive cell proliferation in tumors. Together, these data indicate that the onconeural antigen cdr2 acts during mitosis in cycling cells, at least in part through interactions with c-myc, to regulate a cascade of actions that may present new targeting opportunities in gynecologic cancer.


Nerve Tissue Proteins/physiology , Proto-Oncogene Proteins c-myc/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Anaphase-Promoting Complex-Cyclosome , Animals , Antigens, Neoplasm/physiology , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Nude , Mitosis , Nerve Tissue Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Proto-Oncogene Proteins c-myc/genetics , Rats , Transcription, Genetic , Ubiquitination
18.
Rev Sci Instrum ; 77(7): 74301-7430111, 2006 Jul.
Article En | MEDLINE | ID: mdl-21892232

An elastic neutron scattering instrument, the advanced neutron diffractometer/reflectometer (AND/R), has recently been commissioned at the National Institute of Standards and Technology Center for Neutron Research. The AND/R is the centerpiece of the Cold Neutrons for Biology and Technology partnership, which is dedicated to the structural characterization of thin films and multilayers of biological interest. The instrument is capable of measuring both specular and nonspecular reflectivity, as well as crystalline or semicrystalline diffraction at wave-vector transfers up to approximately 2.20 Å(-1). A detailed description of this flexible instrument and its performance characteristics in various operating modes are given.

...