Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 496
Filter
1.
BMJ Ment Health ; 27(1)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886095

ABSTRACT

BACKGROUND: Individuals with psychiatric disorders have an increased risk of developing dementia. Most cross-sectional studies suffer from selection bias, underdiagnosis and poor population representation, while there is only limited evidence from longitudinal studies on the role of anxiety, bipolar and psychotic disorders. Electronic health records (EHRs) permit large cohorts to be followed across the lifespan and include a wide range of diagnostic information. OBJECTIVE: To assess the association between four groups of psychiatric disorders (schizophrenia, bipolar disorder/mania, depression and anxiety) with dementia in two large population-based samples with EHR. METHODS: Using EHR on nearly 1 million adult individuals in Wales, and from 228 937 UK Biobank participants, we studied the relationships between schizophrenia, mania/bipolar disorder, depression, anxiety and subsequent risk of dementia. FINDINGS: In Secure Anonymised Information Linkage, there was a steep increase in the incidence of a first diagnosis of psychiatric disorder in the years prior to the diagnosis of dementia, reaching a peak in the year prior to dementia diagnosis for all psychiatric diagnoses. Psychiatric disorders, except anxiety, were highly significantly associated with a subsequent diagnosis of dementia: HRs=2.87, 2.80, 1.63 for schizophrenia, mania/bipolar disorder and depression, respectively. A similar pattern was found in the UK Biobank (HRs=4.46, 3.65, 2.39, respectively) and anxiety was also associated with dementia (HR=1.34). Increased risk of dementia was observed for all ages at onset of psychiatric diagnoses when these were divided into 10-year bins. CONCLUSIONS: Psychiatric disorders are associated with an increased risk of subsequent dementia, with a greater risk of more severe disorders. CLINICAL IMPLICATIONS: A late onset of psychiatric disorders should alert clinicians of possible incipient dementia.


Subject(s)
Dementia , Mental Disorders , Humans , Dementia/epidemiology , Dementia/etiology , Dementia/diagnosis , Female , Male , Middle Aged , Aged , Adult , Mental Disorders/epidemiology , Mental Disorders/diagnosis , Wales/epidemiology , Electronic Health Records/statistics & numerical data , Bipolar Disorder/epidemiology , Bipolar Disorder/diagnosis , United Kingdom/epidemiology , Schizophrenia/epidemiology , Schizophrenia/diagnosis , Risk Factors , Aged, 80 and over , Incidence
2.
Schizophr Bull ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869145

ABSTRACT

BACKGROUND: The ganglionic eminences (GE) are fetal-specific structures that give rise to gamma-aminobutyric acid (GABA)- and acetylcholine-releasing neurons of the forebrain. Given the evidence for GABAergic, cholinergic, and neurodevelopmental disturbances in schizophrenia, we tested the potential involvement of GE neuron development in mediating genetic risk for the condition. STUDY DESIGN: We combined data from a recent large-scale genome-wide association study of schizophrenia with single-cell RNA sequencing data from the human GE to test the enrichment of schizophrenia risk variation in genes with high expression specificity for developing GE cell populations. We additionally performed the single nuclei Assay for Transposase-Accessible Chromatin with Sequencing (snATAC-Seq) to map potential regulatory genomic regions operating in individual cell populations of the human GE, using these to test for enrichment of schizophrenia common genetic variant liability and to functionally annotate non-coding variants-associated with the disorder. STUDY RESULTS: Schizophrenia common variant liability was enriched in genes with high expression specificity for developing neuron populations that are predicted to form dopamine D1 and D2 receptor-expressing GABAergic medium spiny neurons of the striatum, cortical somatostatin-positive GABAergic interneurons, calretinin-positive GABAergic neurons, and cholinergic neurons. Consistent with these findings, schizophrenia genetic risk was concentrated in predicted regulatory genomic sequence mapped in developing neuronal populations of the GE. CONCLUSIONS: Our study implicates prenatal development of specific populations of GABAergic and cholinergic neurons in later susceptibility to schizophrenia, and provides a map of predicted regulatory genomic elements operating in cells of the GE.

3.
Transl Psychiatry ; 14(1): 194, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649377

ABSTRACT

Recent research has highlighted the role of complement genes in shaping the microstructure of the brain during early development, and in contributing to common allele risk for Schizophrenia. We hypothesised that common risk variants for schizophrenia within complement genes will associate with structural changes in white matter microstructure within tracts innervating the frontal lobe. Results showed that risk alleles within the complement gene set, but also intergenic alleles, significantly predict axonal density in white matter tracts connecting frontal cortex with parietal, temporal and occipital cortices. Specifically, risk alleles within the Major Histocompatibility Complex region in chromosome 6 appeared to drive these associations. No significant associations were found for the orientation dispersion index. These results suggest that changes in axonal packing - but not in axonal coherence - determined by common risk alleles within the MHC genomic region - including variants related to the Complement system - appear as a potential neurobiological mechanism for schizophrenia.


Subject(s)
Alleles , Genetic Predisposition to Disease , Major Histocompatibility Complex , Schizophrenia , White Matter , Humans , Schizophrenia/genetics , Schizophrenia/pathology , White Matter/pathology , White Matter/diagnostic imaging , Female , Male , Adult , Major Histocompatibility Complex/genetics , Young Adult , Frontal Lobe/pathology , Frontal Lobe/diagnostic imaging , Middle Aged , Diffusion Tensor Imaging , Chromosomes, Human, Pair 6/genetics , Axons/pathology , Polymorphism, Single Nucleotide
4.
J Dairy Sci ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38580153

ABSTRACT

There is an increasing consumer desire for pasture-derived dairy products, as outdoor pasture-based feeding systems are perceived as a natural environment for animals. Despite this, the number of grazing animals globally has declined as a result of the higher milk yields achieved by indoor, total mixed ration feeding systems, in addition to the changing climatic conditions and lower grazing knowledge and infrastructure. This has led to the development of pasture-fed standards, stipulating the necessity of pasture and its minimum requirements as the primary feed source for products advertising such claims, with various requirements depending on region for which it was produced. This work investigates the differences in the composition and techno-functional properties of butters produced from high, medium and no pasture allowance diets during early, mid and late lactation. Butters were produced using milks collected from 3 feeding systems: outdoor pasture grazing (GRS; high pasture allowance); indoor total mixed ration (TMR; no pasture allowance); and a partial mixed ration (PMR; medium pasture allowance) system, which involved outdoor pasture grazing during the day and indoor TMR feeding at night. Butters were manufactured during early, mid and late lactation. Creams derived from TMR feeding systems exhibited the highest milk fat globule size. The fatty acid profiles of butters also differed significantly as a function of diet, and could be readily discriminated by partial least squares analysis. The most important fatty acids in such analysis, as indicated by their highest variable importance projection scores, were CLA C18:2 cis-9 trans-11 (rumenic acid), C16:1 n-7 trans (trans-palmitoleic acid), C18:1 trans (elaidic acid), C18:3 n-3 (α-linolenic acid) and C18:2 n-6 (linoleic acid). Increasing pasture allowances resulted in reduced crystallization temperatures and hardness of butters, while concurrently increasing the 'yellow' b* color. Yellow color was strongly correlated with Raman peaks commonly associated with carotenoids. The milk fat globule size of cream decreased with advancing stage of lactation and churning time of cream was lowest in early lactation. Differences in the fatty acid and triglyceride contents of butter as a result of lactation and dietary effects demonstrated significant correlations with the hardness, rheological, melting and crystallization profiles of the butters. This work highlighted the improved nutritional profile and functional properties of butter with increasing dietary pasture allowance, primarily as a result of increasing proportions of unsaturated fatty acids. Biomarkers of pasture feeding (response in milk proportionate to the pasture allowance) associated with the pasture-fed status of butters were also identified as a result of the significant changes in the fatty acid profile with increasing pasture allowance. This was achieved through the use of 3 authentic feeding systems with varying pasture allowances, commonly operated by farmers around the world and conducted across 3 stages of lactation.

5.
Biol Psychiatry ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38521159

ABSTRACT

BACKGROUND: Schizophrenia is a highly heritable disorder characterized by increased cortical thinning throughout the life span. Studies have reported a shared genetic basis between schizophrenia and cortical thickness. However, no genes whose expression is related to abnormal cortical thinning in schizophrenia have been identified. METHODS: We conducted linear mixed models to estimate the rates of accelerated cortical thinning across 68 regions from the Desikan-Killiany atlas in individuals with schizophrenia compared with healthy control participants from a large longitudinal sample (ncases = 169 and ncontrols = 298, ages 16-70 years). We studied the correlation between gene expression data from the Allen Human Brain Atlas and accelerated thinning estimates across cortical regions. Finally, we explored the functional and genetic underpinnings of the genes that contribute most to accelerated thinning. RESULTS: We found a global pattern of accelerated cortical thinning in individuals with schizophrenia compared with healthy control participants. Genes underexpressed in cortical regions that exhibit this accelerated thinning were downregulated in several psychiatric disorders and were enriched for both common and rare disrupting variation for schizophrenia and neurodevelopmental disorders. In contrast, none of these enrichments were observed for baseline cross-sectional cortical thickness differences. CONCLUSIONS: Our findings suggest that accelerated cortical thinning, rather than cortical thickness alone, serves as an informative phenotype for neurodevelopmental disruptions in schizophrenia. We highlight the genetic and transcriptomic correlates of this accelerated cortical thinning, emphasizing the need for future longitudinal studies to elucidate the role of genetic variation and the temporal-spatial dynamics of gene expression in brain development and aging in schizophrenia.

6.
JAMA Psychiatry ; 81(7): 681-690, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38536179

ABSTRACT

Importance: Large-scale biobanks provide important opportunities for mental health research, but selection biases raise questions regarding the comparability of individuals with those in clinical research settings. Objective: To compare the genetic liability to psychiatric disorders in individuals with schizophrenia in the UK Biobank with individuals in the Psychiatric Genomics Consortium (PGC) and to compare genetic liability and phenotypic features with participants recruited from clinical settings. Design, Setting, and Participants: This cross-sectional study included participants from the population-based UK Biobank and schizophrenia samples recruited from clinical settings (CLOZUK, CardiffCOGS, Cardiff F-Series, and Cardiff Affected Sib-Pairs). Data were collected between January 1993 and July 2021. Data analysis was conducted between July 2021 and June 2023. Main Outcomes and Measures: A genome-wide association study of UK Biobank schizophrenia case-control status was conducted, and the results were compared with those from the PGC via genetic correlations. To test for differences with the clinical samples, polygenic risk scores (PRS) were calculated for schizophrenia, bipolar disorder, depression, and intelligence using PRS-CS. PRS and phenotypic comparisons were conducted using pairwise logistic regressions. The proportions of individuals with copy number variants associated with schizophrenia were compared using Firth logistic regression. Results: The sample of 517 375 participants included 1438 UK Biobank participants with schizophrenia (550 [38.2%] female; mean [SD] age, 54.7 [8.3] years), 499 475 UK Biobank controls (271 884 [54.4%] female; mean [SD] age, 56.5 [8.1] years), and 4 schizophrenia research samples (4758 [28.9%] female; mean [SD] age, 38.2 [21.0] years). Liability to schizophrenia in UK Biobank was highly correlated with the latest genome-wide association study from the PGC (genetic correlation, 0.98; SE, 0.18) and showed the expected patterns of correlations with other psychiatric disorders. The schizophrenia PRS explained 6.8% of the variance in liability for schizophrenia case status in UK Biobank. UK Biobank participants with schizophrenia had significantly lower schizophrenia PRS than 3 of the clinically ascertained samples and significantly lower rates of schizophrenia-associated copy number variants than the CLOZUK sample. UK Biobank participants with schizophrenia had higher educational attainment and employment rates than the clinically ascertained schizophrenia samples, lower rates of smoking, and a later age of onset of psychosis. Conclusions and Relevance: Individuals with schizophrenia in the UK Biobank, and likely other volunteer-based biobanks, represent those less severely affected. Their inclusion in wider studies should enhance the representation of the full spectrum of illness severity.


Subject(s)
Biological Specimen Banks , Genetic Predisposition to Disease , Genome-Wide Association Study , Multifactorial Inheritance , Phenotype , Schizophrenia , Humans , Schizophrenia/genetics , Schizophrenia/epidemiology , United Kingdom/epidemiology , Female , Male , Cross-Sectional Studies , Middle Aged , Multifactorial Inheritance/genetics , Adult , Case-Control Studies , Aged , DNA Copy Number Variations/genetics , Bipolar Disorder/genetics , Bipolar Disorder/epidemiology , UK Biobank
7.
Food Res Int ; 180: 114046, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395564

ABSTRACT

This study investigated the effects of diet and stage of lactation (SOL) on sensory profiles, texture, volatile profiles, and colour of Cheddar cheese. Cheddar cheese was manufactured from early-, mid-, and late-lactation milk obtained from seasonally calved cows (n = 54). Cows were assigned a diet; group 1: perennial ryegrass (GRS), group 2: total mixed ration (TMR), and group 3: partial mixed ration (PMR). Instrumental analysis was performed at 270 days (mature Cheddar). Sensory evaluation took place after 548 days (extra mature Cheddar). Toluene was the only volatile compound that was significantly influenced by diet. The trained panel rated early-lactation cheese as stronger than mid- and late- for cowy/barny flavour and late-lactation cheese as sweeter than early- and mid-lactation cheese. Mid-lactation cheese was liked least overall. Early-lactation cheeses were rated higher for 'crumbly' texture than mid- and late. Diet affected consumer ratings, with GRS and PMR cheese rated as more intense than TMR for flavour, aftertaste, and saltiness. Consumers reported that TMR cheese was lighter in colour compared to GRS cheese, which was supported by instrumental analysis. Consumers perceived GRS as more springy and less crumbly than TMR and PMR, while Texture Profile Analysis indicated that TMR was harder than GRS. Consumer segmentation was observed with two clear preference groups, one preferring GRS and one preferring TMR. For both groups, 'taste' seemed to be the main driver of liking, highlighting that consumer preference is most impacted by individual taste preferences.


Subject(s)
Cheese , Female , Animals , Cattle , Lactation , Taste , Taste Perception , Milk
8.
Eur Neuropsychopharmacol ; 80: 47-54, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38310750

ABSTRACT

Clozapine is the only licensed medication for treatment-resistant schizophrenia (TRS). Few predictors for variation in response to clozapine have been identified, but clozapine metabolism is known to influence therapeutic response and adverse side effects. Here, we expand on genome-wide studies of clozapine metabolism, previously focused on common genetic variation, by analysing whole-exome sequencing data from 2062 individuals with schizophrenia taking clozapine in the UK. We investigated whether rare genomic variation in genes and gene sets involved in the clozapine metabolism pathway influences plasma concentrations of clozapine metabolites, assessed through the longitudinal analysis of 6585 pharmacokinetic assays. We observed a statistically significant association between the burden of rare damaging coding variants (MAF ≤ 1 %) in gene sets broadly related to drug pharmacokinetics and lower clozapine (ß = -0.054, SE = 0.019, P-value = 0.005) concentrations in plasma. We estimate that the effects in clozapine plasma concentrations of a single damaging allele in this gene set are akin to reducing the clozapine dose by about 35 mg/day. The gene-based analysis identified rare variants in CYP1A2, which encodes the enzyme responsible for converting clozapine to norclozapine, as having the strongest effects of any gene on clozapine metabolism (ß = 0.324, SE = 0.124, P = 0.009). Our findings support the hypothesis that rare genetic variants in known drug-metabolising enzymes and transporters can markedly influence clozapine plasma concentrations; these results suggest that pharmacogenomic efforts trying to predict clozapine metabolism and personalise drug therapy could benefit from the inclusion of rare damaging variants in pharmacogenes beyond those already identified and catalogued as PGx star alleles.


Subject(s)
Antipsychotic Agents , Clozapine , Schizophrenia , Humans , Clozapine/adverse effects , Schizophrenia/drug therapy , Schizophrenia/genetics , Schizophrenia/metabolism , Antipsychotic Agents/adverse effects , Pharmacogenetics , Alleles
9.
medRxiv ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38410442

ABSTRACT

Background: Accurate diagnosis of bipolar disorder (BD) is difficult in clinical practice, with an average delay between symptom onset and diagnosis of about 7 years. A key reason is that the first manic episode is often preceded by a depressive one, making it difficult to distinguish BD from unipolar major depressive disorder (MDD). Aims: Here, we use genome-wide association analyses (GWAS) to identify differential genetic factors and to develop predictors based on polygenic risk scores that may aid early differential diagnosis. Methods: Based on individual genotypes from case-control cohorts of BD and MDD shared through the Psychiatric Genomics Consortium, we compile case-case-control cohorts, applying a careful merging and quality control procedure. In a resulting cohort of 51,149 individuals (15,532 BD cases, 12,920 MDD cases and 22,697 controls), we perform a variety of GWAS and polygenic risk scores (PRS) analyses. Results: While our GWAS is not well-powered to identify genome-wide significant loci, we find significant SNP-heritability and demonstrate the ability of the resulting PRS to distinguish BD from MDD, including BD cases with depressive onset. We replicate our PRS findings, but not signals of individual loci in an independent Danish cohort (iPSYCH 2015 case-cohort study, N=25,966). We observe strong genetic correlation between our case-case GWAS and that of case-control BD. Conclusions: We find that MDD and BD, including BD with a depressive onset, are genetically distinct. Further, our findings support the hypothesis that Controls - MDD - BD primarily lie on a continuum of genetic risk. Future studies with larger and richer samples will likely yield a better understanding of these findings and enable the development of better genetic predictors distinguishing BD and, importantly, BD with depressive onset from MDD.

10.
Biol Psychiatry ; 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38185234

ABSTRACT

Precision medicine has the ambition to improve treatment response and clinical outcomes through patient stratification and holds great potential for the treatment of mental disorders. However, several important factors are needed to transform current practice into a precision psychiatry framework. Most important are 1) the generation of accessible large real-world training and test data including genomic data integrated from multiple sources, 2) the development and validation of advanced analytical tools for stratification and prediction, and 3) the development of clinically useful management platforms for patient monitoring that can be integrated into health care systems in real-life settings. This narrative review summarizes strategies for obtaining the key elements-well-powered samples from large biobanks integrated with electronic health records and health registry data using novel artificial intelligence algorithms-to predict outcomes in severe mental disorders and translate these models into clinical management and treatment approaches. Key elements are massive mental health data and novel artificial intelligence algorithms. For the clinical translation of these strategies, we discuss a precision medicine platform for improved management of mental disorders. We use cases to illustrate how precision medicine interventions could be brought into psychiatry to improve the clinical outcomes of mental disorders.

11.
Psychol Med ; 54(8): 1810-1823, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38288603

ABSTRACT

BACKGROUND: Incidence of first-episode psychosis (FEP) varies substantially across geographic regions. Phenotypes of subclinical psychosis (SP), such as psychotic-like experiences (PLEs) and schizotypy, present several similarities with psychosis. We aimed to examine whether SP measures varied across different sites and whether this variation was comparable with FEP incidence within the same areas. We further examined contribution of environmental and genetic factors to SP. METHODS: We used data from 1497 controls recruited in 16 different sites across 6 countries. Factor scores for several psychopathological dimensions of schizotypy and PLEs were obtained using multidimensional item response theory models. Variation of these scores was assessed using multi-level regression analysis to estimate individual and between-sites variance adjusting for age, sex, education, migrant, employment and relational status, childhood adversity, and cannabis use. In the final model we added local FEP incidence as a second-level variable. Association with genetic liability was examined separately. RESULTS: Schizotypy showed a large between-sites variation with up to 15% of variance attributable to site-level characteristics. Adding local FEP incidence to the model considerably reduced the between-sites unexplained schizotypy variance. PLEs did not show as much variation. Overall, SP was associated with younger age, migrant, unmarried, unemployed and less educated individuals, cannabis use, and childhood adversity. Both phenotypes were associated with genetic liability to schizophrenia. CONCLUSIONS: Schizotypy showed substantial between-sites variation, being more represented in areas where FEP incidence is higher. This supports the hypothesis that shared contextual factors shape the between-sites variation of psychosis across the spectrum.


Subject(s)
Psychotic Disorders , Schizotypal Personality Disorder , Humans , Psychotic Disorders/epidemiology , Male , Female , Europe/epidemiology , Adult , Brazil/epidemiology , Young Adult , Adolescent , Schizotypal Personality Disorder/epidemiology , Incidence , Middle Aged , Phenotype
12.
J Child Psychol Psychiatry ; 65(1): 42-51, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37469035

ABSTRACT

BACKGROUND: Depression and anxiety are the most common mental health problems in young people. Currently, clinicians are advised to wait before initiating treatment for young people with these disorders as many spontaneously remit. However, others develop recurrent disorder but this subgroup cannot be identified at the outset. We examined whether psychiatric polygenic scores (PGS) could help inform stratification efforts to predict those at higher risk of recurrence. METHODS: Probable emotional disorder was examined in two UK population cohorts using the emotional symptoms subscale of the Strengths and Difficulties Questionnaire (SDQ). Those with emotional disorder at two or more time points between ages 5 and 25 years were classed as 'recurrent emotional disorder' (n = 1,643) and those with emotional disorder at one time point as having 'single episode emotional disorder' (n = 1,435, controls n = 8,715). We first examined the relationship between psychiatric PGS and emotional disorders in childhood and adolescence. Second, we tested whether psychiatric PGS added to predictor variables of known association with emotional disorder (neurodevelopmental comorbidity, special educational needs, family history of depression and socioeconomic status) when discriminating between single-episode and recurrent emotional disorder. Analyses were conducted separately in individuals of European and South Asian ancestry. RESULTS: Probable emotional disorder was associated with higher PGS for major depressive disorder (MDD), anxiety, broad depression, ADHD and autism spectrum disorder (ASD) in those of European ancestry. Higher MDD and broad depression PGS were associated with emotional disorder in people of South Asian ancestry. Recurrent, compared to single-episode, emotional disorder was associated with ASD and parental psychiatric history. PGS were not associated with episode recurrence, and PGS did not improve discrimination of recurrence when combined with clinical predictors. CONCLUSIONS: Our findings do not support the use of PGS as a tool to assess the likelihood of recurrence in young people experiencing their first episode of emotional disorder.


Subject(s)
Autism Spectrum Disorder , Depressive Disorder, Major , Adolescent , Humans , Depressive Disorder, Major/epidemiology , Autism Spectrum Disorder/epidemiology , Comorbidity , Anxiety/genetics , Anxiety Disorders/epidemiology , Anxiety Disorders/genetics
13.
Schizophr Bull ; 50(2): 327-338, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-37824720

ABSTRACT

BACKGROUND: Schizophrenia is a highly heritable brain disorder with a typical symptom onset in early adulthood. The 2-hit hypothesis posits that schizophrenia results from differential early neurodevelopment, predisposing an individual, followed by a disruption of later brain maturational processes that trigger the onset of symptoms. STUDY DESIGN: We applied hierarchical clustering to transcription levels of 345 genes previously linked to schizophrenia, derived from cortical tissue samples from 56 donors across the lifespan. We subsequently calculated clustered-specific polygenic risk scores for 743 individuals with schizophrenia and 743 sex- and age-matched healthy controls. STUDY RESULTS: Clustering revealed a set of 183 genes that was significantly upregulated prenatally and downregulated postnatally and 162 genes that showed the opposite pattern. The prenatally upregulated set of genes was functionally annotated to fundamental cell cycle processes, while the postnatally upregulated set was associated with the immune system and neuronal communication. We found an interaction between the 2 scores; higher prenatal polygenic risk showed a stronger association with schizophrenia diagnosis at higher levels of postnatal polygenic risk. Importantly, this finding was replicated in an independent clinical cohort of 3233 individuals. CONCLUSIONS: We provide genetics-based evidence that schizophrenia is shaped by disruptions of separable biological processes acting at distinct phases of neurodevelopment. The modeling of genetic risk factors that moderate each other's effect, informed by the timing of their expression, will aid in a better understanding of the development of schizophrenia.


Subject(s)
Schizophrenia , Humans , Adult , Schizophrenia/genetics , Brain , Genetic Risk Score , Multifactorial Inheritance , Cluster Analysis , Genetic Predisposition to Disease
14.
Biol Psychiatry ; 95(9): 888-895, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38103876

ABSTRACT

BACKGROUND: Genes that encode synaptic proteins or messenger RNA targets of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein) have been linked to schizophrenia and autism spectrum disorder (ASD) through the enrichment of genetic variants that confer risk for these disorders. FMRP binds many transcripts with synaptic functions and is thought to regulate their local translation, a process that enables rapid and compartmentalized protein synthesis required for development and plasticity. METHODS: We used summary statistics from large-scale genome-wide association studies of schizophrenia (74,776 cases, 101,023 controls) and ASD (18,381 cases, 27,969 controls) to test the hypothesis that the subset of synaptic genes that encode localized transcripts is more strongly associated with each disorder than nonlocalized transcripts. We also postulated that this subset of synaptic genes is responsible for associations attributed to FMRP targets. RESULTS: Schizophrenia associations were enriched in genes encoding localized synaptic transcripts compared to the remaining synaptic genes or to the remaining localized transcripts; this also applied to ASD associations, although only for transcripts observed after stimulation by fear conditioning. The genetic associations with either disorder captured by these gene sets were independent of those derived from FMRP targets. Schizophrenia association was related to FMRP interactions with messenger RNAs in somata, but not in dendrites, while ASD association was related to FMRP binding in either compartment. CONCLUSIONS: Our data suggest that synaptic transcripts capable of local translation are particularly relevant to the pathogenesis of schizophrenia and ASD, but they do not characterize the associations attributed to current sets of FMRP targets.


Subject(s)
Autism Spectrum Disorder , Schizophrenia , Humans , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Genome-Wide Association Study , Schizophrenia/genetics , Schizophrenia/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Neurons/metabolism
15.
Nat Commun ; 14(1): 8077, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057346

ABSTRACT

Autism spectrum disorder (ASD), Tourette syndrome (TS), and attention-deficit/hyperactivity disorder (ADHD) display strong male sex bias, due to a combination of genetic and biological factors, as well as selective ascertainment. While the hemizygous nature of chromosome X (Chr X) in males has long been postulated as a key point of "male vulnerability", rare genetic variation on this chromosome has not been systematically characterized in large-scale whole exome sequencing studies of "idiopathic" ASD, TS, and ADHD. Here, we take advantage of informative recombinations in simplex ASD families to pinpoint risk-enriched regions on Chr X, within which rare maternally-inherited damaging variants carry substantial risk in males with ASD. We then apply a modified transmission disequilibrium test to 13,052 ASD probands and identify a novel high confidence ASD risk gene at exome-wide significance (MAGEC3). Finally, we observe that rare damaging variants within these risk regions carry similar effect sizes in males with TS or ADHD, further clarifying genetic mechanisms underlying male vulnerability in multiple neurodevelopmental disorders that can be exploited for systematic gene discovery.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Autistic Disorder , Neurodevelopmental Disorders , Tourette Syndrome , Humans , Male , Female , Attention Deficit Disorder with Hyperactivity/genetics , Tourette Syndrome/genetics , Autistic Disorder/genetics , Autism Spectrum Disorder/genetics
16.
medRxiv ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38106032

ABSTRACT

Background: Diagnoses in psychiatric research can be derived from various sources. This study assesses the validity of a self-reported clinical diagnosis of schizophrenia. Methods: The study included 3,029 clinically ascertained participants with schizophrenia or psychotic disorders diagnosed by self-report and/or research interview and 1,453 UK Biobank participants with self-report and/or medical record diagnosis of schizophrenia or schizoaffective disorder depressed-type (SA-D). We assessed positive predictive values (PPV) of self-reported clinical diagnoses against research interview and medical record diagnoses. We compared polygenic risk scores (PRS) and phenotypes across diagnostic groups, and compared the variance explained by schizophrenia PRS to samples in the Psychiatric Genomics Consortium (PGC). Results: In the clinically ascertained sample, the PPV of self-reported schizophrenia to a research diagnosis of schizophrenia was 0.70, which increased to 0.81 when benchmarked against schizophrenia or SA-D. In UK Biobank, the PPV of self-reported schizophrenia to a medical record diagnosis was 0.74. Compared to self-report participants, those with a research diagnosis were younger and more likely to have a high school qualification (clinically ascertained sample) and those with a medical record diagnosis were less likely to be employed or have a high school qualification (UK Biobank). Schizophrenia PRS did not differ between participants that had a diagnosis from self-report, research diagnosis or medical record diagnosis. Polygenic liability r2, for all diagnosis definitions, fell within the distribution of PGC schizophrenia cohorts. Conclusions: Self-report measures of schizophrenia are justified in research to maximise sample size and representativeness, although within sample validation of diagnoses is recommended.

17.
Mol Psychiatry ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37990052

ABSTRACT

Anxiety and depression (emotional disorders) are familial and heritable, especially when onset is early. However, other cross-generational studies suggest transmission of youth emotional problems is explained by mainly environmental risks. We set out to test the contribution of parental non-transmitted genetic liability, as indexed by psychiatric/neurodevelopmental common polygenic liability, to youth emotional problems using a UK population-based cohort: the Millennium Cohort Study. European (N = 6328) and South Asian (N = 814) ancestries were included, as well as a subset with genomic data from both parents (European: N = 2809; South Asian: N = 254). We examined the association of transmitted (PGST) and non-transmitted polygenic scores (PGSNT) for anxiety, depression, bipolar disorder and neurodevelopmental disorders (attention-deficit/hyperactivity disorder [ADHD], autism spectrum disorder [ASD], schizophrenia) with youth emotional disorder and symptom scores, measured using the parent- and self-reported Strengths and Difficulties Questionnaire emotional subscale at 6 timepoints between ages 3-17 years. In the European sample, PGST for anxiety and depression, but not bipolar disorder, were associated with emotional disorder and symptom scores across all ages, except age 3, with strongest association in adolescence. ADHD and ASD PGST also showed association across ages 11-17 years. In the South Asian sample, evidence for associations between all PGST and outcome measures were weaker. There was weak evidence of association between PGSNT for anxiety and depression and age 17 symptom scores in the South Asian sample, but not in the European sample for any outcome. Overall, PGST for depression, anxiety, ADHD and ASD contributed to youth emotional problems, with stronger associations in adolescence. There was limited support for non-transmitted genetic effects: these findings do not support the hypothesis that parental polygenic psychiatric/neurodevelopmental liability confer risk to offspring emotional problems through non-transmitted rearing/nurture effects.

18.
Schizophrenia (Heidelb) ; 9(1): 74, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37853043

ABSTRACT

Clozapine is effective at reducing symptoms of treatment-resistant schizophrenia, but it can also induce several adverse outcomes including neutropenia and agranulocytosis. We used linear mixed-effect models and structural equation modelling to determine whether pharmacokinetic and genetic variables influence absolute neutrophil count in a longitudinal UK-based sample of clozapine users not currently experiencing neutropenia (N = 811). Increased daily clozapine dose was associated with elevated neutrophil count, amounting to a 133 cells/mm3 rise per standard deviation increase in clozapine dose. One-third of the total effect of clozapine dose was mediated by plasma clozapine and norclozapine levels, which themselves demonstrated opposing, independent associations with absolute neutrophil count. Finally, CYP1A2 pharmacogenomic activity score was associated with absolute neutrophil count, supporting lower neutrophil levels in CYP1A2 poor metabolisers during clozapine use. This information may facilitate identifying at-risk patients and then introducing preventative interventions or individualised pharmacovigilance procedures to help mitigate these adverse haematological reactions.

19.
Mol Psychiatry ; 28(9): 3638-3647, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37853064

ABSTRACT

There has been substantial progress in understanding the genetics of schizophrenia over the past 15 years. This has revealed a highly polygenic condition with the majority of the currently explained heritability coming from common alleles of small effect but with additional contributions from rare copy number and coding variants. Many specific genes and loci have been implicated that provide a firm basis upon which mechanistic research can proceed. These point to disturbances in neuronal, and particularly synaptic, functions that are not confined to a small number of brain regions and circuits. Genetic findings have also revealed the nature of schizophrenia's close relationship to other conditions, particularly bipolar disorder and childhood neurodevelopmental disorders, and provided an explanation for how common risk alleles persist in the population in the face of reduced fecundity. Current genomic approaches only potentially explain around 40% of heritability, but only a small proportion of this is attributable to robustly identified loci. The extreme polygenicity poses challenges for understanding biological mechanisms. The high degree of pleiotropy points to the need for more transdiagnostic research and the shortcomings of current diagnostic criteria as means of delineating biologically distinct strata. It also poses challenges for inferring causality in observational and experimental studies in both humans and model systems. Finally, the Eurocentric bias of genomic studies needs to be rectified to maximise benefits and ensure these are felt across diverse communities. Further advances are likely to come through the application of new and emerging technologies, such as whole-genome and long-read sequencing, to large and diverse samples. Substantive progress in biological understanding will require parallel advances in functional genomics and proteomics applied to the brain across developmental stages. For these efforts to succeed in identifying disease mechanisms and defining novel strata they will need to be combined with sufficiently granular phenotypic data.


Subject(s)
Bipolar Disorder , Schizophrenia , Humans , Child , Schizophrenia/genetics , Bipolar Disorder/genetics , Genome , Genomics , Emotions , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study
20.
J Dairy Sci ; 106(12): 8910-8925, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37678772

ABSTRACT

Globally, the majority of dairy cows are milked twice a day (TAD); however, in pasture-based production systems, such as in Ireland, the idea of milking once a day (OAD) is being considered for reasons such as improved work-life balance. The immediate effects within a lactation, as well as the multilactation consequences of OAD, compared with TAD milking, require understanding. The objective of this randomized experiment was to compare OAD and TAD milking, over a 3-yr period, by examining the differences in milk production and composition, body weight (BW), body condition score (BCS), dry matter intake (DMI), udder characteristics, locomotion score, and milking time. Over the 3-yr period, 83 cows were enrolled in the experiment; 32, 44, and 48 cows in yr 1, 2, and 3 of the experiment, respectively. Each year, 23% of the herds were primiparous animals, while the remainder were second lactation or greater in parity. All cows were milked in the morning at 0700 h; only cows milked TAD were milked a second time each day at 1600 h. Cows rotationally grazed pastures for the duration of the lactating period and were housed during the nonlactating period. Milking cows OAD reduced cumulative milk yield by 26%, and milk solids yield (kg of fat + kg of protein) by 21%, across the 3 yr of the experiment when compared with cows milked TAD which produced 4,126 and 365 kg/cow, respectively. A contributory factor to the reduced production was a shorter lactation length (9.7 d) of the cows milked OAD compared with TAD (294 d). Milk fat percent of cows milked TAD was similar for all 3 yr of the study (5.05%), whereas milk fat percent of the cows milked OAD increased year on year, with each year being greater than the previous year (5.02%, 5.32%, and 5.70% for yr 1, 2, and 3; respectively). Milk protein percent was greater (+0.19%) for cows milked OAD compared with TAD which was 3.78%. Compared with cows milked TAD, total DMI for cows milked OAD was 22% less at the start of lactation (<167 d), but as the lactation progressed (>167 d) we observed no difference in DMI between treatments. Similar to the literature, milking cows OAD significantly increased average somatic cell score, both during (+16%) and at the end of lactation (+19%), compared with milking cows TAD which were 4.69 and 4.79, respectively. We detected positive aspects associated with OAD milking such as greater BW, BCS, and fertility performance. Milking OAD reduced both milking time per cow per day (reductions ranged from 34% in the first 4 mo of lactation to 43% during mo 5-9 of lactation) and milking time per liter of milk (-3.5 s/L) throughout lactation, leading to less labor inputs on-farm which can have positive implications for farmer work-life balance. The significant time saving and potential savings in costs (e.g., electricity) need to be considered in conjunction with the milk production reduction when considering OAD milking for the entire lactation.


Subject(s)
Dairying , Lactation , Animals , Cattle , Female , Pregnancy , Body Weight , Dairying/methods , Milk/chemistry , Milk Proteins/analysis , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...