Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Commun Biol ; 6(1): 1278, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110605

ABSTRACT

Plasticity and homeostatic mechanisms allow neural networks to maintain proper function while responding to physiological challenges. Despite previous work investigating morphological and synaptic effects of brain-derived neurotrophic factor (BDNF), the most prevalent growth factor in the central nervous system, how exposure to BDNF manifests at the network level remains unknown. Here we report that BDNF treatment affects rodent hippocampal network dynamics during development and recovery from glutamate-induced excitotoxicity in culture. Importantly, these effects are not obvious when traditional activity metrics are used, so we delve more deeply into network organization, functional analyses, and in silico simulations. We demonstrate that BDNF partially restores homeostasis by promoting recovery of weak and medium connections after injury. Imaging and computational analyses suggest these effects are caused by changes to inhibitory neurons and connections. From our in silico simulations, we find that BDNF remodels the network by indirectly strengthening weak excitatory synapses after injury. Ultimately, our findings may explain the difficulties encountered in preclinical and clinical trials with BDNF and also offer information for future trials to consider.


Subject(s)
Brain-Derived Neurotrophic Factor , Synapses , Brain-Derived Neurotrophic Factor/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Cells, Cultured , Synapses/metabolism , Neurons/physiology , Glutamic Acid/metabolism
2.
Mol Biol Cell ; 34(8): ar83, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37223966

ABSTRACT

Ena/VASP proteins are processive actin polymerases that are required throughout animal phylogeny for many morphogenetic processes, including axon growth and guidance. Here we use in vivo live imaging of morphology and actin distribution to determine the role of Ena in promoting the growth of the TSM1 axon of the Drosophila wing. Altering Ena activity causes stalling and misrouting of TSM1. Our data show that Ena has a substantial impact on filopodial morphology in this growth cone but exerts only modest effects on actin distribution. This is in contrast to the main regulator of Ena, Abl tyrosine kinase, which was shown previously to have profound effects on actin and only mild effects on TSM1 growth cone morphology. We interpret these data as suggesting that the primary role of Ena in this axon may be to link actin to the morphogenetic processes of the plasma membrane, rather than to regulate actin organization itself. These data also suggest that a key role of Ena, acting downstream of Abl, may be to maintain consistent organization and reliable evolution of growth cone structure, even as Abl activity varies in response to guidance cues in the environment.


Subject(s)
Actins , Growth Cones , Animals , Actins/metabolism , Axons/metabolism , Drosophila/metabolism , Growth Cones/metabolism , Proto-Oncogene Proteins c-abl
3.
Adv Biol (Weinh) ; 7(6): e2200269, 2023 06.
Article in English | MEDLINE | ID: mdl-36709481

ABSTRACT

Astrocytes are key regulators of brain homeostasis, equilibrating ion, water, and neurotransmitter concentrations and maintaining essential conditions for proper cognitive function. Recently, it has been shown that the excitability of the actin cytoskeleton manifests in second-scale dynamic fluctuations and acts as a sensor of chemophysical environmental cues. However, it is not known whether the cytoskeleton is excitable in astrocytes and how the homeostatic function of astrocytes is linked to the dynamics of the cytoskeleton. Here it is shown that homeostatic regulation involves the excitable dynamics of actin in certain subcellular regions of astrocytes, especially near the cell boundary. The results further indicate that actin dynamics concentrate into "hotspot" regions that selectively respond to certain chemophysical stimuli, specifically the homeostatic challenges of ion or water concentration increases. Substrate topography makes the actin dynamics of astrocytes weaker. Super-resolution images demonstrate that surface topography is also associated with the predominant perpendicular alignment of actin filaments near the cell boundary, whereas flat substrates result in an actin cortex mainly parallel to the cell boundary. Additionally, coculture with neurons increases both the probability of actin dynamics and the strength of hotspots. The excitable systems character of actin thus makes astrocytes direct participants in neural cell network dynamics.


Subject(s)
Actins , Astrocytes , Animals , Actins/metabolism , Astrocytes/metabolism , Rodentia/metabolism , Cells, Cultured , Cytoskeleton/metabolism
4.
Netw Neurosci ; 5(1): 166-197, 2021.
Article in English | MEDLINE | ID: mdl-33688611

ABSTRACT

Cytosolic PSD-95 interactor (cypin) regulates many aspects of neuronal development and function, ranging from dendritogenesis to synaptic protein localization. While it is known that removal of postsynaptic density protein-95 (PSD-95) from the postsynaptic density decreases synaptic N-methyl-D-aspartate (NMDA) receptors and that cypin overexpression protects neurons from NMDA-induced toxicity, little is known about cypin's role in AMPA receptor clustering and function. Experimental work shows that cypin overexpression decreases PSD-95 levels in synaptosomes and the PSD, decreases PSD-95 clusters/µm2, and increases mEPSC frequency. Analysis of microelectrode array (MEA) data demonstrates that cypin or cypinΔPDZ overexpression increases sensitivity to CNQX (cyanquixaline) and AMPA receptor-mediated decreases in spike waveform properties. Network-level analysis of MEA data reveals that cypinΔPDZ overexpression causes networks to be resilient to CNQX-induced changes in local efficiency. Incorporating these findings into a computational model of a neural circuit demonstrates a role for AMPA receptors in cypin-promoted changes to networks and shows that cypin increases firing rate while changing network functional organization, suggesting cypin overexpression facilitates information relay but modifies how information is encoded among brain regions. Our data show that cypin promotes changes to AMPA receptor signaling independent of PSD-95 binding, shaping neural circuits and output to regions beyond the hippocampus.

5.
Lab Chip ; 21(8): 1549-1562, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33629685

ABSTRACT

We demonstrate diffraction-limited and super-resolution imaging through thick layers (tens-hundreds of microns) of BIO-133, a biocompatible, UV-curable, commercially available polymer with a refractive index (RI) matched to water. We show that cells can be directly grown on BIO-133 substrates without the need for surface passivation and use this capability to perform extended time-lapse volumetric imaging of cellular dynamics 1) at isotropic resolution using dual-view light-sheet microscopy, and 2) at super-resolution using instant structured illumination microscopy. BIO-133 also enables immobilization of 1) Drosophila tissue, allowing us to track membrane puncta in pioneer neurons, and 2) Caenorhabditis elegans, which allows us to image and inspect fine neural structure and to track pan-neuronal calcium activity over hundreds of volumes. Finally, BIO-133 is compatible with other microfluidic materials, enabling optical and chemical perturbation of immobilized samples, as we demonstrate by performing drug and optogenetic stimulation on cells and C. elegans.


Subject(s)
Caenorhabditis elegans , Water , Animals , Microscopy, Fluorescence , Polymers , Refractometry
7.
Front Cell Neurosci ; 12: 60, 2018.
Article in English | MEDLINE | ID: mdl-29563866

ABSTRACT

The patterning of dendrites is regulated by many factors, such as brain-derived neurotrophic factor (BDNF), which our laboratory has previously shown alters the dendritic arbor uniquely depending on the mode of extracellular application. In the current work, we examine how BDNF affects dendritogenesis in hippocampal neurons when it is overexpressed intracellularly by transcripts previously reported to be transported to distinct cellular compartments. The BDNF gene is processed at two different polyadenylation sites, leading to mRNA transcription with two different length 3' untranslated regions (UTRs), and therefore, different mRNA localization preferences. We found that overexpression of BDNF mRNA with or without 3' UTRs significantly alters dendritic branching compared to branching in control neurons as analyzed by Sholl distribution curves. Unexpectedly, we found that the overexpression of the shorter BDNF mRNA (reported to be preferentially targeted to the cell body) results in similar changes to Sholl curves compared to overexpression of the longer BDNF mRNA (reported to be preferentially targeted to both the cell body and dendrites). We also investigated whether the BDNF receptor TrkB mediates these changes and found that inhibiting TrkB blocks increases in Sholl curves, although at different distances depending on the transcript's UTR. Finally, although it is not found in nature, we also examined the effects of overexpressing BDNF mRNA with the unique portion of the longer 3' UTR since it was previously shown to be necessary for dendritic targeting of mRNA. We found that its overexpression increases Sholl curves at distances close to the cell body and that these changes also depend on TrkB activity. This work illustrates how the mRNA spatial code affects how BDNF alters local dendritogenesis and how TrkB may mediate these effects. Finally, our findings emphasize the importance of intracellular transport of BDNF mRNAs in the regulation of dendrite morphology.

8.
J Neural Eng ; 15(1): 016020, 2018 02.
Article in English | MEDLINE | ID: mdl-29091046

ABSTRACT

OBJECTIVE: This study investigates the effect that overexpression of cytosolic PSD-95 interactor (cypin), a regulator of synaptic PSD-95 protein localization and a core regulator of dendrite branching, exerts on the electrical activity of rat hippocampal neurons and networks. APPROACH: We cultured rat hippocampal neurons and used lipid-mediated transfection and lentiviral gene transfer to achieve high levels of cypin or cypin mutant (cypinΔPDZ; PSD-95 non-binding) expression cellularly and network-wide, respectively. MAIN RESULTS: Our analysis revealed that although overexpression of cypin and cypinΔPDZ increase dendrite numbers and decrease spine density, cypin and cypinΔPDZ distinctly regulate neuronal activity. At the single cell level, cypin promotes decreases in bursting activity while cypinΔPDZ reduces sEPSC frequency and further decreases bursting compared to cypin. At the network level, by using the Fano factor as a measure of spike count variability, cypin overexpression results in an increase in variability of spike count, and this effect is abolished when cypin cannot bind PSD-95. This variability is also dependent on baseline activity levels and on mean spike rate over time. Finally, our spike sorting data show that overexpression of cypin results in a more complex distribution of spike waveforms and that binding to PSD-95 is essential for this complexity. SIGNIFICANCE: Our data suggest that dendrite morphology does not play a major role in cypin action on electrical activity.


Subject(s)
Carrier Proteins/biosynthesis , Dendrites/metabolism , Guanine Deaminase/biosynthesis , Hippocampus/metabolism , Nerve Net/metabolism , Neurons/metabolism , Animals , Carrier Proteins/genetics , Cells, Cultured , Dendrites/genetics , Disks Large Homolog 4 Protein/genetics , Disks Large Homolog 4 Protein/metabolism , Gene Expression , Guanine Deaminase/genetics , Protein Binding/physiology , Rats
9.
Technology (Singap World Sci) ; 6(3-4): 79-100, 2018.
Article in English | MEDLINE | ID: mdl-30713991

ABSTRACT

Cancer is a devastating disease that takes the lives of hundreds of thousands of people every year. Due to disease heterogeneity, standard treatments, such as chemotherapy or radiation, are effective in only a subset of the patient population. Tumors can have different underlying genetic causes and may express different proteins in one patient versus another. This inherent variability of cancer lends itself to the growing field of precision and personalized medicine (PPM). There are many ongoing efforts to acquire PPM data in order to characterize molecular differences between tumors. Some PPM products are already available to link these differences to an effective drug. It is clear that PPM cancer treatments can result in immense patient benefits, and companies and regulatory agencies have begun to recognize this. However, broader changes to the healthcare and insurance systems must be addressed if PPM is to become part of standard cancer care.

10.
Cell Mol Life Sci ; 74(23): 4369-4385, 2017 12.
Article in English | MEDLINE | ID: mdl-28698933

ABSTRACT

Proper communication among neurons depends on an appropriately formed dendritic arbor, and thus, aberrant changes to the arbor are implicated in many pathologies, ranging from cognitive disorders to neurodegenerative diseases. Due to the importance of dendritic shape to neuronal network function, the morphology of dendrites is tightly controlled and is influenced by both intrinsic and extrinsic factors. In this work, we examine how brain-derived neurotrophic factor (BDNF), one of the most well-studied extrinsic regulators of dendritic branching, affects the arbor when it is applied locally via microbeads to cultures of hippocampal neurons. We found that local application of BDNF increases both proximal and distal branching in a time-dependent manner and that local BDNF application attenuates pruning of dendrites that occurs with neuronal maturation. Additionally, we examined whether cytosolic PSD-95 interactor (cypin), an intrinsic regulator of dendritic branching, plays a role in these changes and found strong evidence for the involvement of cypin in BDNF-promoted increases in dendrites after 24 but not 48 h of application. This current study extends our previous work in which we found that bath application of BDNF for 72 h, but not shorter times, increases proximal dendrite branching and that this increase occurs through transcriptional regulation of cypin. Moreover, this current work illustrates how dendritic branching is regulated differently by the same growth factor depending on its spatial localization, suggesting a novel pathway for modulation of dendritic branching locally.


Subject(s)
Brain-Derived Neurotrophic Factor/pharmacology , Dendrites/drug effects , Hippocampus/drug effects , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Neuronal Plasticity/drug effects , Animals , Dendrites/metabolism , Dendrites/ultrastructure , Disks Large Homolog 4 Protein , Embryo, Mammalian , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hippocampus/metabolism , Hippocampus/ultrastructure , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Microspheres , Neuronal Plasticity/genetics , Primary Cell Culture , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rats , Time Factors , Transcription, Genetic , Transfection
11.
Front Cell Neurosci ; 9: 285, 2015.
Article in English | MEDLINE | ID: mdl-26283921

ABSTRACT

Determining the shape of cell-specific dendritic arbors is a tightly regulated process that occurs during development. When this regulation is aberrant, which occurs during disease or injury, alterations in dendritic shape result in changes to neural circuitry. There has been significant progress on characterizing extracellular and intrinsic factors that regulate dendrite number by our laboratory and others. Generally, changes to the dendritic arbor are assessed by Sholl analysis or simple dendrite counting. However, we have found that this general method often overlooks local changes to the arbor. Previously, we developed a program (titled Bonfire) to facilitate digitization of neurite morphology and subsequent Sholl analysis and to assess changes to root, intermediate, and terminal neurites. Here, we apply these different Sholl analyses, and a novel Sholl analysis, to uncover previously unknown changes to the dendritic arbor when we overexpress an important regulator of dendrite branching, cytosolic PSD-95 interactor (cypin), at two developmental time points. Our results suggest that standard Sholl analysis and simple dendrite counting are not sufficient for uncovering local changes to the dendritic arbor.

SELECTION OF CITATIONS
SEARCH DETAIL
...