Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
BMC Ophthalmol ; 23(1): 120, 2023 Mar 27.
Article En | MEDLINE | ID: mdl-36973683

Vitiligo is a disorder characterized by loss of epidermal melanocytes, resulting in depigmented macules and patches. While the relationship between ocular pathology and vitiligo has been demonstrated in conditions such as Vogt-Koyanagi-Harada and Alezzandrini syndromes, the ocular associations of non-syndromic vitiligo are incompletely understood. We conducted a systematic review to comprehensively describe the structural and functional changes seen in the eyes of patients with vitiligo, to identify patients at heightened risk for ocular disease, and to provide an approach to management of ocular manifestations of vitiligo. Overall, the strongest link between vitiligo and ocular pathology seems to lie with dry eye disease and pigmentary abnormalities of various ocular structures, especially the retinal pigment epithelium. Normal-tension glaucoma may also be more prevalent in the vitiligo population. The available literature did not provide conclusive evidence for increased risk of cataracts or uveitis. Aside from the impact of symptomatic dry eye disease, it seems unlikely that there are significant functional consequences of these ocular manifestations such as impaired visual acuity or visual fields.


Cataract , Uveitis , Uveomeningoencephalitic Syndrome , Vitiligo , Humans , Vitiligo/complications , Vitiligo/pathology , Uveomeningoencephalitic Syndrome/complications , Eye , Uveitis/complications , Cataract/complications
2.
Biol Psychiatry ; 85(12): 1011-1020, 2019 06 15.
Article En | MEDLINE | ID: mdl-31027646

BACKGROUND: In humans, accumulated adverse experiences during childhood increase the risk of anxiety disorders and attention-deficit/hyperactivity disorder. In rodents, the ventral hippocampus (vHIP) is associated with anxiety regulation, and lesions in this region alter both anxiety-like behavior and activity levels. Neuronal oscillations in the vHIP of the theta frequency range (4-12 Hz) have been implicated in anxious states and derive in part from the activity of inhibitory interneurons in the hippocampus, some of which are enwrapped with perineuronal nets (PNNs), extracellular matrix structures known to regulate plasticity. We sought to investigate the associations among early life stress-induced anxiety and hyperactivity with vHIP neuronal oscillations, inhibitory interneurons, and PNNs in mice. METHODS: We used repeated maternal separation with early weaning (MSEW) to model accumulated early life adversity in mouse offspring and studied the underlying cellular and electrophysiological changes in the vHIP that are associated with excessive anxiety and hyperactivity. RESULTS: We found increased anxiety-like behavior and activity levels in MSEW adult males, along with increased theta power and enhanced theta-gamma coupling in the vHIP. MSEW mice showed reduced intensity of parvalbumin as well as increased PNN intensity around parvalbumin-positive interneurons in the vHIP. We further observed that MSEW increased orthodenticle homeobox protein 2, a transcription factor promoting PNN development, in the choroid plexus, where it is produced, as well as in parvalbumin-positive interneurons, where it is sequestered. CONCLUSIONS: These findings raise the possibility of causal links among parvalbumin-positive interneurons, PNNs, orthodenticle homeobox protein 2, and MSEW-induced anxiety and hyperactivity.


Anxiety/physiopathology , Brain Waves , Extracellular Matrix/physiology , Hippocampus/physiopathology , Interneurons/physiology , Neurons/physiology , Animals , Female , Male , Maternal Deprivation , Mice, Inbred C57BL , Neural Pathways/physiopathology
...