Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
2.
Virchows Arch ; 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37452846

ABSTRACT

Amyloidosis is triggered by the truncation of amyloid precursor proteins, causing organ damages. While previous studies found the truncation of amyloid A (AA) and amyloid transthyretin (ATTR) occurs in C- and N-terminal, respectively, the detailed mechanism of the fibril formation remains unclear. Liquid chromatography mass spectrometry is usually applied for a qualitative purpose, and thus quantification of tryptic peptide residue is difficult. We therefore employed a mass spectrometry-based quantification by isotope-labeled cell-free (MS-QBIC) to analyze the truncation processes in amyloid fibrillogenesis of AA and ATTR using the formalin-fixed paraffin-embedded tissues of autopsy cases. In this study, the process of transthyretin from an 'early fibril state' consisting of full-length ATTR to a 'mature ATTR amyloid fibril' with a truncated low-amyloidogenic segment has been mathematically revealed. The amount of full-length ATTR was nine times higher than in mature fibers. Large cohort studies using MS-QBIC may shed light on the clinical significance of amyloid fibrils.

3.
Mol Biol Cell ; 34(4): ar29, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36735498

ABSTRACT

The endoplasmic reticulum (ER) is a major cell compartment where protein synthesis, folding, and posttranslational modifications occur with assistance from a wide variety of chaperones and enzymes. Quality control systems selectively eliminate abnormal proteins that accumulate inside the ER due to cellular stresses. ER-phagy, that is, selective autophagy of the ER, is a mechanism that maintains or reestablishes cellular and ER-specific homeostasis through removal of abnormal proteins. However, how ER luminal proteins are recognized by the ER-phagy machinery remains unclear. Here, we applied the aggregation-prone protein, six-repeated islet amyloid polypeptide (6xIAPP), as a model ER-phagy substrate and found that cell cycle progression 1 (CCPG1), which is an ER-phagy receptor, efficiently mediates its degradation via ER-phagy. We also identified prolyl 3-hydroxylase family member 4 (P3H4) as an endogenous cargo of CCPG1-dependent ER-phagy. The ER luminal region of CCPG1 contains several highly conserved regions that we refer to as cargo-interacting regions (CIRs); these interact directly with specific luminal cargos for ER-phagy. Notably, 6xIAPP and P3H4 interact directly with different CIRs. These findings indicate that CCPG1 is a bispecific ER-phagy receptor for ER luminal proteins and the autophagosomal membrane that contributes to the efficient removal of aberrant ER-resident proteins through ER-phagy.


Subject(s)
Autophagy , Endoplasmic Reticulum Stress , Carrier Proteins/metabolism , Endoplasmic Reticulum/metabolism , Homeostasis , Proteins/metabolism , Cell Cycle Proteins/metabolism
4.
PLoS Biol ; 20(10): e3001813, 2022 10.
Article in English | MEDLINE | ID: mdl-36194579

ABSTRACT

The reduced sleep duration previously observed in Camk2b knockout mice revealed a role for Ca2+/calmodulin-dependent protein kinase II (CaMKII)ß as a sleep-promoting kinase. However, the underlying mechanism by which CaMKIIß supports sleep regulation is largely unknown. Here, we demonstrate that activation or inhibition of CaMKIIß can increase or decrease sleep duration in mice by almost 2-fold, supporting the role of CaMKIIß as a core sleep regulator in mammals. Importantly, we show that this sleep regulation depends on the kinase activity of CaMKIIß. A CaMKIIß mutant mimicking the constitutive-active (auto)phosphorylation state promotes the transition from awake state to sleep state, while mutants mimicking subsequent multisite (auto)phosphorylation states suppress the transition from sleep state to awake state. These results suggest that the phosphorylation states of CaMKIIß differently control sleep induction and maintenance processes, leading us to propose a "phosphorylation hypothesis of sleep" for the molecular control of sleep in mammals.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Calcium , Animals , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Mammals/metabolism , Mice , Mice, Knockout , Phosphorylation , Sleep
5.
Mol Cell ; 82(19): 3677-3692.e11, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36044902

ABSTRACT

The covalent conjugation of ubiquitin family proteins is a widespread post-translational protein modification. In the ubiquitin family, the ATG8 subfamily is exceptional because it is conjugated mainly to phospholipids. However, it remains unknown whether other ubiquitin family proteins are also conjugated to phospholipids. Here, we report that ubiquitin is conjugated to phospholipids, mainly phosphatidylethanolamine (PE), in yeast and mammalian cells. Ubiquitinated PE (Ub-PE) accumulates at endosomes and the vacuole (or lysosomes), and its level increases during starvation. Ub-PE is also found in baculoviruses. In yeast, PE ubiquitination is catalyzed by the canonical ubiquitin system enzymes Uba1 (E1), Ubc4/5 (E2), and Tul1 (E3) and is reversed by Doa4. Liposomes containing Ub-PE recruit the ESCRT components Vps27-Hse1 and Vps23 in vitro. Ubiquitin-like NEDD8 and ISG15 are also conjugated to phospholipids. These findings suggest that the conjugation to membrane phospholipids is not specific to ATG8 but is a general feature of the ubiquitin family.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Animals , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Liposomes/metabolism , Mammals/metabolism , Phosphatidylethanolamines/metabolism , Phospholipids/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination
6.
EMBO Rep ; 23(6): e54801, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35417087

ABSTRACT

Selective autophagy cargos are recruited to autophagosomes primarily by interacting with autophagosomal ATG8 family proteins via the LC3-interacting region (LIR). The upstream sequence of most LIRs contains negatively charged residues such as Asp, Glu, and phosphorylated Ser and Thr. However, the significance of LIR phosphorylation (compared with having acidic amino acids) and the structural basis of phosphorylated LIR-ATG8 binding are not entirely understood. Here, we show that the serine residues upstream of the core LIR of the endoplasmic reticulum (ER)-phagy receptor TEX264 are phosphorylated by casein kinase 2, which is critical for its interaction with ATG8s, autophagosomal localization, and ER-phagy. Structural analysis shows that phosphorylation of these serine residues increases binding affinity by producing multiple hydrogen bonds with ATG8s that cannot be mimicked by acidic residues. This binding mode is different from those of other ER-phagy receptors that utilize a downstream helix, which is absent from TEX264, to increase affinity. These results suggest that phosphorylation of the LIR is critically important for strong LIR-ATG8 interactions, even in the absence of auxiliary interactions.


Subject(s)
Casein Kinase II , Microtubule-Associated Proteins , Autophagy , Autophagy-Related Protein 8 Family/chemistry , Carrier Proteins/metabolism , Casein Kinase II/metabolism , Endoplasmic Reticulum/metabolism , Microtubule-Associated Proteins/metabolism , Phosphorylation , Serine/metabolism
7.
Proc Natl Acad Sci U S A ; 119(12): e2116729119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35302893

ABSTRACT

SignificanceHuman sleep phenotypes are diversified by genetic and environmental factors, and a quantitative classification of sleep phenotypes would lead to the advancement of biomedical mechanisms underlying human sleep diversity. To achieve that, a pipeline of data analysis, including a state-of-the-art sleep/wake classification algorithm, the uniform manifold approximation and projection (UMAP) dimension reduction method, and the density-based spatial clustering of applications with noise (DBSCAN) clustering method, was applied to the 100,000-arm acceleration dataset. This revealed 16 clusters, including seven different insomnia-like phenotypes. This kind of quantitative pipeline of sleep analysis is expected to promote data-based diagnosis of sleep disorders and psychiatric disorders that tend to be complicated by sleep disorders.


Subject(s)
Biological Specimen Banks , Sleep Wake Disorders , Acceleration , Humans , Phenotype , Sleep , United Kingdom
8.
iScience ; 25(2): 103727, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35106471

ABSTRACT

Arm acceleration data have been used to measure sleep-wake rhythmicity. Although several methods have been developed for the accurate classification of sleep-wake episodes, a method with both high sensitivity and specificity has not been fully established. In this study, we developed an algorithm, named ACceleration-based Classification and Estimation of Long-term sleep-wake cycles (ACCEL) that classifies sleep and wake episodes using only raw accelerometer data, without relying on device-specific functions. The algorithm uses a derivative of triaxial acceleration (jerk), which can reduce individual differences in the variability of acceleration data. Applying a machine learning algorithm to the jerk data achieved sleep-wake classification with a high sensitivity (>90%) and specificity (>80%). A jerk-based analysis also succeeded in recording periodic activities consistent with pulse waves. Therefore, the ACCEL algorithm will be a useful method for large-scale sleep measurement using simple accelerometers in real-world settings.

9.
Front Syst Neurosci ; 16: 1059421, 2022.
Article in English | MEDLINE | ID: mdl-36618010

ABSTRACT

Sleep is an evolutionarily conserved phenotype shared by most of the animals on the planet. Prolonged wakefulness will result in increased sleep need or sleep pressure. However, its mechanisms remain elusive. Recent findings indicate that Ca2+ signaling, known to control diverse physiological functions, also regulates sleep. This review intends to summarize research advances in Ca2+ and Ca2+/calmodulin-dependent protein kinase II (CaMKII) in sleep regulation. Significant changes in sleep phenotype have been observed through calcium-related channels, receptors, and pumps. Mathematical modeling for neuronal firing patterns during NREM sleep suggests that these molecules compose a Ca2+-dependent hyperpolarization mechanism. The intracellular Ca2+ may then trigger sleep induction and maintenance through the activation of CaMKII, one of the sleep-promoting kinases. CaMKII and its multisite phosphorylation status may provide a link between transient calcium dynamics typically observed in neurons and sleep-wake dynamics observed on the long-time scale.

10.
Nat Commun ; 12(1): 3292, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34078910

ABSTRACT

Autophagy regulates primary cilia formation, but the underlying mechanism is not fully understood. In this study, we identify NIMA-related kinase 9 (NEK9) as a GABARAPs-interacting protein and find that NEK9 and its LC3-interacting region (LIR) are required for primary cilia formation. Mutation in the LIR of NEK9 in mice also impairs in vivo cilia formation in the kidneys. Mechanistically, NEK9 interacts with MYH9 (also known as myosin IIA), which has been implicated in inhibiting ciliogenesis through stabilization of the actin network. MYH9 accumulates in NEK9 LIR mutant cells and mice, and depletion of MYH9 restores ciliogenesis in NEK9 LIR mutant cells. These results suggest that NEK9 regulates ciliogenesis by acting as an autophagy adaptor for MYH9. Given that the LIR in NEK9 is conserved only in land vertebrates, the acquisition of the autophagic regulation of the NEK9-MYH9 axis in ciliogenesis may have possible adaptive implications for terrestrial life.


Subject(s)
Autophagy/genetics , Cilia/metabolism , Microtubule-Associated Proteins/genetics , Myosin Heavy Chains/genetics , NIMA-Related Kinases/genetics , Amino Acid Sequence , Animals , Brain/cytology , Brain/metabolism , Cell Line , Cilia/genetics , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Regulation , Kidney/cytology , Kidney/metabolism , Liver/cytology , Liver/metabolism , Male , Mice , Mice, Knockout , Microtubule-Associated Proteins/metabolism , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Myocardium/cytology , Myocardium/metabolism , Myosin Heavy Chains/metabolism , NIMA-Related Kinases/deficiency , Protein Binding , Sequence Alignment , Sequence Homology, Amino Acid , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Signal Transduction
11.
iScience ; 24(1): 101946, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33437934

ABSTRACT

Chaos behavior has been observed in various cellular and molecular processes. Here, we modeled reversible phosphorylation dynamics to elucidate a design principle for autonomous chaos generation that may arise from generic enzymatic reactions. A comprehensive parameter search demonstrated that the reaction system composed of a set of kinases and phosphatases and two substrates with two modification sites exhibits chaos behavior. All reactions are described according to the Michaelis-Menten reaction scheme without exotic functions being applied to enzymes and substrates. Clustering analysis of parameter sets that can generate chaos behavior revealed the existence of motif structures. These chaos motifs allow the two-substrate species to interact via enzyme availability and constrain the two substrates' dynamic changes in phosphorylation status so that they occur at different timescales. This chaos motif structure is found in several enzymatic reactions, suggesting that chaos behavior may underlie cellular autonomy in a variety of biochemical systems.

12.
Front Psychol ; 11: 575328, 2020.
Article in English | MEDLINE | ID: mdl-33123055

ABSTRACT

Sleep is a fundamental property conserved across species. The homeostatic induction of sleep indicates the presence of a mechanism that is progressively activated by the awake state and that induces sleep. Several lines of evidence support that such function, namely, sleep need, lies in the neuronal assemblies rather than specific brain regions and circuits. However, the molecular mechanism underlying the dynamics of sleep need is still unclear. This review aims to summarize recent studies mainly in rodents indicating that protein phosphorylation, especially at the synapses, could be the molecular entity associated with sleep need. Genetic studies in rodents have identified a set of kinases that promote sleep. The activity of sleep-promoting kinases appears to be elevated during the awake phase and in sleep deprivation. Furthermore, the proteomic analysis demonstrated that the phosphorylation status of synaptic protein is controlled by the sleep-wake cycle. Therefore, a plausible scenario may be that the awake-dependent activation of kinases modifies the phosphorylation status of synaptic proteins to promote sleep. We also discuss the possible importance of multisite phosphorylation on macromolecular protein complexes to achieve the slow dynamics and physiological functions of sleep in mammals.

13.
PLoS One ; 15(7): e0235143, 2020.
Article in English | MEDLINE | ID: mdl-32609750

ABSTRACT

To clarify the significance of quantitative analyses of amyloid proteins in clinical practice and in research relating to systemic amyloidoses, we applied mass spectrometry-based quantification by isotope-labeled cell-free products (MS-QBIC) to formalin-fixed, paraffin-embedded (FFPE) tissues. The technique was applied to amyloid tissues collected by laser microdissection of Congo red-stained lesions of FFPE specimens. Twelve of 13 amyloid precursor proteins were successfully quantified, including serum amyloid A (SAA), transthyretin (TTR), immunoglobulin kappa light chain (IGK), immunoglobulin lambda light chain (IGL), beta-2-microglobulin (B2M), apolipoprotein (Apo) A1, Apo A4, Apo E, lysozyme, Apo A2, gelsolin, and fibrinogen alpha chain; leukocyte cell-derived chemotaxin-2 was not detected. The quantification of SAA, TTR, IGK, IGL, and B2M confirmed the responsible proteins, even when the immunohistochemical results were not decisive. Considerable amounts of Apo A1, Apo A4, and Apo E were deposited in parallel amounts with the responsible proteins. Quantification of amyloid protein by MS-QBIC is feasible and useful for the classification of and research on systemic amyloidoses.


Subject(s)
Amyloidogenic Proteins/analysis , Amyloidosis/pathology , Mass Spectrometry , Aged , Aged, 80 and over , Female , Humans , Immunohistochemistry , Male , Mass Spectrometry/methods , Middle Aged
14.
J Cell Sci ; 133(13)2020 07 06.
Article in English | MEDLINE | ID: mdl-32482797

ABSTRACT

Cubilin (CUBN) and amnionless (AMN), expressed in kidney and intestine, form a multiligand receptor complex called CUBAM that plays a crucial role in albumin absorption. To date, the mechanism of albumin endocytosis mediated by CUBAM remains to be elucidated. Here, we describe a quantitative assay to evaluate albumin uptake by CUBAM using cells expressing full-length CUBN and elucidate the crucial roles of the C-terminal part of CUBN and the endocytosis signal motifs of AMN in albumin endocytosis. We also demonstrate that nuclear valosin-containing protein-like 2 (NVL2), an interacting protein of AMN, is involved in this process. Although NVL2 was mainly localized in the nucleolus in cells without AMN expression, it was translocated to the extranuclear compartment when coexpressed with AMN. NVL2 knockdown significantly impaired internalization of the CUBN-albumin complex in cultured cells, demonstrating an involvement of NVL2 in endocytic regulation. These findings uncover a link between membrane and nucleolar proteins that is involved in endocytic processes.


Subject(s)
Endocytosis , Nuclear Proteins , Albumins/genetics , Cell Membrane , Kidney , Nuclear Proteins/genetics
15.
Nat Commun ; 11(1): 1982, 2020 04 27.
Article in English | MEDLINE | ID: mdl-32341345

ABSTRACT

Whole-organ/body three-dimensional (3D) staining and imaging have been enduring challenges in histology. By dissecting the complex physicochemical environment of the staining system, we developed a highly optimized 3D staining imaging pipeline based on CUBIC. Based on our precise characterization of biological tissues as an electrolyte gel, we experimentally evaluated broad 3D staining conditions by using an artificial tissue-mimicking material. The combination of optimized conditions allows a bottom-up design of a superior 3D staining protocol that can uniformly label whole adult mouse brains, an adult marmoset brain hemisphere, an ~1 cm3 tissue block of a postmortem adult human cerebellum, and an entire infant marmoset body with dozens of antibodies and cell-impermeant nuclear stains. The whole-organ 3D images collected by light-sheet microscopy are used for computational analyses and whole-organ comparison analysis between species. This pipeline, named CUBIC-HistoVIsion, thus offers advanced opportunities for organ- and organism-scale histological analysis of multicellular systems.


Subject(s)
Brain/pathology , Cerebellum/pathology , Electrolytes , Imaging, Three-Dimensional , Microscopy, Fluorescence , Adult , Animals , Animals, Newborn , Callithrix , Female , Fluorescent Dyes , Humans , Image Processing, Computer-Assisted , Male , Mice , Mice, Inbred C57BL , Optical Imaging
16.
F1000Res ; 82019.
Article in English | MEDLINE | ID: mdl-31031966

ABSTRACT

Since Ronald Konopka and Seymour Benzer's discovery of the gene Period in the 1970s, the circadian rhythm field has diligently investigated regulatory mechanisms and intracellular transcriptional and translation feedback loops involving Period, and these investigations culminated in a 2017 Nobel Prize in Physiology or Medicine for Michael W. Young, Michael Rosbash, and Jeffrey C. Hall. Although research on 24-hour behavior rhythms started with Period, a series of discoveries in the past decade have shown us that post-transcriptional regulation and protein modification, such as phosphorylation and oxidation, are alternatives ways to building a ticking clock.


Subject(s)
Circadian Rhythm , Gene Expression Regulation , Protein Processing, Post-Translational , Feedback , Oxidation-Reduction
18.
Sci Rep ; 8(1): 2351, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29402915

ABSTRACT

Mutations in either cubilin (CUBN) or amnionless (AMN) genes cause Imerslund-Gräsbeck syndrome (IGS), a hereditary disease characterised by anaemia attributed to selective intestinal malabsorption of cobalamin and low-molecular weight proteinuria. Although cubilin protein does not have a transmembrane segment, it functions as a multi-ligand receptor by binding to the transmembrane protein, amnionless. We established a system to quantitatively analyse membrane targeting of the protein complex in cultured renal and intestinal cells and analysed the pathogenic mechanisms of mutations found in IGS patients. A novel CUBN mutation, several previously reported CUBN missense mutations and all previously reported AMN missense mutations resulted in endoplasmic reticulum (ER) retention and completely inhibited amnionless-dependent plasma membrane expression of cubilin. The ER retention of cubilin and amnionless was confirmed in renal proximal tubular cells of a patient with IGS. Notably, the interaction between cubilin and amnionless was not sufficient, but amnionless-mediated glycosylation of cubilin was necessary for their surface expression. Quantitative mass spectrometry and mutagenesis demonstrated that N-linked glycosylation of at least 4 residues of cubilin protein was required for its surface targeting. These results delineated the molecular mechanisms of membrane trafficking of cubilin in renal and intestinal cells.


Subject(s)
Protein Transport , Proteins/metabolism , Receptors, Cell Surface/metabolism , Cell Membrane/metabolism , Cells, Cultured , Endoplasmic Reticulum/metabolism , Glycosylation , Humans , Intestinal Mucosa/metabolism , Kidney/metabolism , Membrane Proteins , Mutation, Missense , Proteins/genetics , Receptors, Cell Surface/genetics
19.
Article in English | MEDLINE | ID: mdl-29038116

ABSTRACT

The circadian clock in cyanobacteria employs a posttranslational oscillator composed of a sequential phosphorylation-dephosphorylation cycle of KaiC protein, in which the dynamics of protein structural changes driven by temperature-compensated KaiC's ATPase activity are critical for determining the period. On the other hand, circadian clocks in eukaryotes employ transcriptional feedback loops as a core mechanism. In this system, the dynamics of protein accumulation and degradation affect the circadian period. However, recent studies of eukaryotic circadian clocks reveal that the mechanism controlling the circadian period can be independent of the regulation of protein abundance. Instead, the circadian substrate is often phosphorylated at multiple sites at flexible protein regions to induce structural changes. The phosphorylation is catalyzed by kinases that induce sequential multisite phosphorylation such as casein kinase 1 (CK1) with temperature-compensated activity. We propose that the design principles of phosphorylation-dependent circadian-period determination in eukaryotes may share characteristics with the posttranslational oscillator in cyanobacteria.


Subject(s)
Circadian Clocks/physiology , Eukaryota/physiology , Gene Expression Regulation/physiology , Animals , Cyanobacteria/physiology , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Phosphorylation
20.
Curr Opin Neurobiol ; 44: 212-221, 2017 06.
Article in English | MEDLINE | ID: mdl-28575719

ABSTRACT

Several lines of evidence indicate that the sleep-wake state of cortical neurons is regulated not only through neuronal projections from the lower brain, but also through the cortical neurons' intrinsic ability to initiate a slow firing pattern related to the slow-wave oscillation observed in electroencephalography of the sleeping brain. Theoretical modeling and experiments with genetic and pharmacological perturbation suggest that ion channels and kinases acting downstream of calcium signaling regulate the cortical-membrane potential and sleep duration. In this review, we introduce possible Ca2+-dependent hyperpolarization mechanisms in cortical neurons, in which Ca2+ signaling associated with neuronal excitation evokes kinase cascades, and the activated kinases modify ion channels or pumps to regulate the cortical sleep/wake firing mode.


Subject(s)
Membrane Potentials/physiology , Sleep/physiology , Brain Waves/physiology , Electroencephalography , Homeostasis/physiology , Humans , Neurons/physiology , Potassium Channels, Calcium-Activated/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...