Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Biomolecules ; 14(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38785993

ABSTRACT

Despite the extensive research conducted on Alzheimer's disease (AD) over the years, no effective drug for AD treatment has been found. Therefore, the development of new drugs for the treatment of AD is of the utmost importance. We recently reported the proteolytic activities of JAL-TA9 (YKGSGFRMI) and ANA-TA9 (SKGQAYRMA), synthetic peptides of nine amino acids each, derived from the Box A region of Tob1 and ANA/BTG3 proteins, respectively. Furthermore, two components of ANA-TA9, ANA-YA4 (YRMI) at the C-terminus end and ANA-SA5 (SKGQA) at the N-terminus end of ANA-TA9, exhibited proteolytic activity against amyloid-ß (Aß) fragment peptides. In this study, we identified the active center of ANA-SA5 using AEBSF, a serine protease inhibitor, and a peptide in which the Ser residue of ANA-SA5 was replaced with Leu. In addition, we demonstrate the proteolytic activity of ANA-SA5 against the soluble form Aß42 (a-Aß42) and solid insoluble form s-Aß42. Furthermore, ANA-SA5 was not cytotoxic to A549 cells. These results indicate that ANA-SA5 is a promising Catalytide and a potential candidate for the development of new peptide drugs targeting Aß42 for AD treatment.


Subject(s)
Amyloid beta-Peptides , Proteolysis , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Humans , Proteolysis/drug effects , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Peptide Fragments/metabolism , Peptides/chemistry , Peptides/pharmacology , Cell Line, Tumor
2.
Free Radic Biol Med ; 208: 252-259, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37549755

ABSTRACT

Oxidative stress and the resulting lipid peroxidation are associated with various pathological states, including neurodegenerative diseases and cancer. The end products of lipid peroxidation, such as 4-oxo-2(E)-nonenal (ONE), 4-hydroxy-2(E)-nonenal (HNE), and methylglyoxal (MG), exert several biological effects through modification of various cellular components, including DNA and proteins. Glutathione peroxidase 1 (GPx1) is an intracellular antioxidant enzyme that uses glutathione (GSH) to reduce a variety of peroxides, thereby modulating cellular oxidative stress and redox-mediated responses. GPx1 contains nucleophilic amino acids at its active (one Sec) and GSH-binding (four Arg and one Lys) sites. We found that lipid peroxidation-derived reactive aldehydes (ONE, HNE, and MG) modified the GSH-binding site, resulting in the inhibition of GPx1 activity. Mass spectrometry-based proteomic analysis identified the sites modified by each aldehyde (ONE, 14 sites; HNE, 7 sites; MG, 9 sites). The GSH-binding sites modified were as follows: ONE, Arg57, 103, 184, and 185; HNE, Lys91; MG, Arg103. Upon incubation of GPx1 with each aldehyde, ONE reduced GPx1 activity more significantly than did HNE or MG in a dose- and time-dependent manner. The addition of GSH to GPx1 3 h after incubation with ONE prevented further inhibition by trapping ONE as a ONE-GSH adduct. However, the activity of GPx1 was not restored to the initial level, indicating that ONE modified GPx1 irreversibly. This study suggests that oxidative damage to lipids, resulting in the formation of reactive aldehydes, can amplify cellular oxidative stress via direct inactivation of GPx1, which increases the production of intracellular peroxides.


Subject(s)
Glutathione Peroxidase GPX1 , Proteomics , Lipid Peroxidation , Aldehydes/metabolism , Oxidative Stress , Glutathione/metabolism , Peroxides
3.
Toxicol Res ; 39(1): 147-156, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36726824

ABSTRACT

Oxidative stress is strongly associated with the onset and/or progression of diabetes. Under conditions of oxidative stress, lipid hydroperoxides are decomposed to reactive aldehydes that have been reported to induce insulin resistance by modifying proteins involved in insulin signaling. Pyridoxamine (PM) can inhibit the formation of advanced glycation/lipoxidation end products by scavenging reactive carbonyl species. Thus, PM has emerged as a promising drug candidate for various chronic conditions, including diabetic complications. In this study, L6 skeletal muscle cells were treated with 4-oxo-2(E)-nonenal (ONE), one of the most abundant and reactive lipid-derived aldehydes. Cellular insulin resistance was assessed by measuring insulin-stimulated glucose uptake using 2-deoxyglucose. ONE induced a time- and dose-dependent decrease in glucose uptake. Liquid chromatography/electrospray ionization-mass spectrometry analysis of the reaction between ONE and insulin receptor substrate 1 (IRS1) lysate identified multiple modifications that could disturb the interaction between IRS1 and activated IR, leading to insulin resistance. Pretreatment of the cells with PM restored the ONE-induced decrease in glucose uptake. Concomitantly, the formation of PM-ONE adducts in cell culture medium was increased in a PM-dose dependent manner. PM can therefore prevent lipid hydroperoxide-derived insulin resistance by quenching ONE. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-022-00155-z.

4.
Biochem Biophys Rep ; 30: 101268, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35586246

ABSTRACT

Amyloid beta (Aß) proteins are produced from amyloid precursor protein cleaved by ß- and γ-secretases, and are the main components of senile plaques pathologically found in Alzheimer's disease (AD) patient brains. Therefore, the relationship between AD and Aßs has been well studied for both therapeutic and diagnostic purposes. Several enzymes have been reported to degrade Aßs in vivo, with neprilysin (NEP) and insulysin (insulin-degrading enzyme, IDE) being the most prominent. In this article, we describe the mass spectrometric characterization of peptide fragments generated using NEP and IDE, and clarify the differences in digestion specificities between these two enzymes for non-aggregated Aß40, aggregated Aß40, and Aß40 peptide fragments, including Aß16. Our results allowed identification of all the peptide fragments from non-aggregated Aß40: NEP, 23 peptide fragments consisting of 2-11 amino-acid residues, 17 cleavage sites; IDE, 23 peptide fragments consisting of 6-33 amino-acid residues, 15 cleavage sites. Also, we confirmed that IDE can digest only whole Aß40, whereas NEP can digest both Aß40 and partial structures such as Aß16 and peptide fragments generated by the digestion of Aß40 by IDE. Furthermore, we confirmed that IDE and NEP are unable to digest aggregated Aß40.

5.
Anal Biochem ; 630: 114327, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34364857

ABSTRACT

Angiotensin (Ang) peptides are the main effectors of the renin-angiotensin system (RAS) regulating diverse physiological conditions and are involved in renal and vascular diseases. Currently, quantitative analyses of Ang peptides in human plasma mainly rely on radioimmunoassay-based methods whose reported levels are quite divergent. Analyses are further complicated by the potential of Ang peptides to bind to solid surfaces, to be enzymatically decomposed during sample preparation, and to undergo post-translational modifications. A column switching-parallel LC/ESI-SRM/MS method has been developed for seven Ang peptides (Ang I, Ang II, Ang III, Ang IV, Ang 1-9, Ang 1-7, and Ang A) in human plasma. Aqueous acetonitrile (5%) containing 50 mM arginine (Arg) as a dissolving solution and a combination of protease inhibitors with formic acid were used to prevent adsorption and enzymatic degradation, respectively. Plasma samples were simply deproteinized with acetonitrile followed by clean-up with an on-line trap column via column-switching. Stable isotope dilution with [13C5,15N1-Val]-Ang peptides as internal standards was employed for quantitative analysis. The current methodology has been successfully applied to determine the plasma levels of Ang peptides in healthy participants, suggesting future applicability to studies of various diseases related to RAS.


Subject(s)
Angiotensins/blood , Blood Chemical Analysis , Peptides/blood , Adult , Chromatography, Liquid , Healthy Volunteers , Humans , Male , Middle Aged , Spectrometry, Mass, Electrospray Ionization , Young Adult
6.
J Proteome Res ; 19(9): 3837-3845, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32786680

ABSTRACT

Proteins are continuously exposed to diverse chemical stresses, and the resulting chemical modifications can provide significant information on biological events. Keratins are the main constituent of human skin and are the major target proteins of various chemical modifications. We have previously developed a mass spectrometry-based noninvasive proteomic methodology to screen oxidative modifications in human skin keratins. We have improved this methodology in terms of sample preparation time and amino acid sequence coverage using an on-tape digestion method. After sampling by tape stripping, skin proteins on the tape were subjected to reduction/alkylation, followed by trypsin digestion without a presolubilization step using detergents. To screen chemical modifications in keratins, target modifications and tryptic target peptides carrying the modification sites were determined from in vitro experiments with major reactive chemical species (4-hydroxy-2(E)-nonenal (HNE), 4-oxo-2(E)-nonenal, glucose, methylglyoxal, peroxynitrite, and hydrogen peroxide). The developed method was used to screen target modifications in controls and patients with a swollen red rash. Basal levels of lipid-derived modification, oxidation, nitration, and glycation in keratins were detected in controls. Principal component analysis based on the relative chemical modification resulted in a clear classification of both groups within a 95% confidence interval. Lipid-derived HNE modification increased most significantly in the patient group. This methodology can be easily applied to patients with other diseases, and the target modifications can be used as biomarkers of certain physiological conditions.


Subject(s)
Keratins , Proteomics , Digestion , Humans , Keratins/metabolism , Mass Spectrometry , Oxidation-Reduction
7.
Food Chem ; 333: 127480, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32688306

ABSTRACT

Acrylamide (AA) is a toxic industrial chemical but is also found in heated potato foods such as French fries due to the Maillard reaction between amino acids and reducing sugars. However, high-temperature cooking is often required for flavoring, browning, and sterilizing of raw ingredients. Imidazole dipeptides, such as carnosine (ß-alanyl-l-histidine, CAR) and anserine (ß-alanyl-Nπ-methyl-l-histidine, ANS), are present in high concentrations in meat and are known to scavenge radical species and toxic aldehydes. Here, we investigated the reaction between CAR/ANS and AA under several conditions expected to detoxify AA by cooking with meat. The reaction products were characterized by LC-ESI-MS/MS as CAR/ANS-AA adducts at the N-terminus, and His-Nτ/Nπ. The reactivity of CAR sites toward AA were in the order N-terminus > Nτ > Nπ. A selective LC-ESI-SRM/MS method was also developed and confirmed the formation of CAR/ANS-AA adducts during pan frying of minced potato and chicken breast.


Subject(s)
Acrylamide/chemistry , Anserine/chemistry , Carnosine/chemistry , Chickens , Cooking , Acrylamide/toxicity , Animals , Meat/analysis , Tandem Mass Spectrometry
8.
J Toxicol Sci ; 44(8): 559-563, 2019.
Article in English | MEDLINE | ID: mdl-31378767

ABSTRACT

Acetaminophen (Paracetamol, APAP) has been widely used for many decades as an analgesic and antipyretic agent but APAP overdose often causes acute adverse reactions, particularly liver damage. The metabolically oxidized form of APAP, N-acetyl-p-benzoquinone imine (NAPQI), is chemically reactive and binds covalently to proteins. Therefore, NAPQI is believed to be the key metabolite that causes hepatotoxicity, especially under conditions of glutathione depletion. Other APAP-induced adverse reactions, such as skin damage, are rare and remain poorly studied. Here, we report a case study of a male patient who presented with an acute swelling skin rash (without hepatotoxicity) caused by therapeutic doses of APAP. Plasma samples were collected at 17 hr after dosing (during the manifestation of symptoms) and at one month (after recovery) and were subjected to LC-MS analysis of NAPQI-adducts. A significant concentration of NAPQI-cysteine adduct (33 pmol/mL) was found together with low concentrations of NAPQI-N-acetylcysteine adduct (2.0 pmol/mL) and NAPQI-glutathione adduct (0.13 pmol/mL). However, the NAPQI-albumin adduct was below the detection limit (below 0.001% modification on albumin) despite a previous report of high concentrations of NAPQI-albumin adduct following acute liver injury. Therefore, the observed APAP-induced skin damage may have had a different cause from APAP-induced liver injury.


Subject(s)
Acetaminophen/adverse effects , Acetylcysteine/blood , Benzoquinones/adverse effects , Benzoquinones/blood , Cysteine/blood , Edema/chemically induced , Exanthema/chemically induced , Glutathione/blood , Imines/adverse effects , Imines/blood , Skin Diseases/chemically induced , Acetylcysteine/metabolism , Acute Disease , Adult , Benzoquinones/metabolism , Chemical and Drug Induced Liver Injury , Chromatography, Liquid , Cysteine/metabolism , Glutathione/metabolism , Humans , Imines/metabolism , Male , Protein Binding , Serum Albumin/metabolism , Tandem Mass Spectrometry
9.
Chem Res Toxicol ; 32(7): 1412-1422, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31144504

ABSTRACT

Angiotensin (Ang) II is a major bioactive peptide of the renin/angiotensin system and is involved in various cardiovascular functions and diseases. Ang II type 1 (AT1) receptor mediates most of the physiological effects of Ang II. Previous studies have revealed that the lipid peroxidation products 4-oxo-2(E)-nonenal (ONE) and 4-hydroxy-2(E)-nonenal (HNE) readily modify the N-terminus and Asp1, Arg2, and His6 residues of Ang II, and these modifications alter the biological activities of Ang II. Ang II is known to stimulate the formation of reactive oxygen species (ROS) that mediate cardiovascular remodeling. Another major consequence of ROS-derived damage is lipid peroxidation, which generates genotoxic aldehydes such as ONE and HNE. This study demonstrated that Ang II induced lipid peroxidation-derived modifications of cellular molecules in EA.hy926 cells, a human vascular endothelial cell line. Ang P (ONE- and ROS-derived N-terminal pyruvamide Ang II) and [His6(HNE)]-Ang II were detected in the medium of EA.hy926 cells incubated with Ang II, and their concentrations increased dose-dependently upon the addition of ascorbic acid (AscA) and CuSO4. Cells were then subjected to metabolic labeling using SILFAC (stable isotope labeling by fatty acids in cell culture) with [13C18]-linoleic acid. Analysis of cellular phospholipids indicated over 90% labeling. [13C9]-Thiadiazabicyclo-ONE-glutathione adduct as well as Ang P and [His6([13C9]-HNE)]-Ang II was detected in the labeled cells upon treatment with Ang II and their concentrations increased in an Ang II dose-dependent manner. Incubation of the labeled cells with losartan, an AT1 receptor blocker, inhibited the formation of modified Ang IIs in a dose-dependent manner. These results indicate that Ang II induces lipid peroxidation and modification of various cellular molecules and these reactions are mediated by the activation of AT1 receptor. Therefore, lipid peroxidation could be one mechanism by which Ang II contributes to cardiovascular dysfunction.


Subject(s)
Angiotensin II/metabolism , Endothelial Cells/metabolism , Lipid Peroxidation/physiology , Oxidative Stress/physiology , Aldehydes/chemistry , Aldehydes/metabolism , Angiotensin II/chemistry , Ascorbic Acid/pharmacology , Carbon Isotopes/chemistry , Cell Line , Copper Sulfate/pharmacology , Humans , Isotope Labeling , Linoleic Acid/chemistry , Oxidative Stress/drug effects , Receptor, Angiotensin, Type 1/metabolism
10.
J Pept Sci ; 24(8-9): e3097, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29971858

ABSTRACT

Imidazole dipeptides, such as carnosine (ß-alanyl-l-histidine) and anserine (ß-alanyl-Nπ -methyl-l-histidine), are highly localized in excitable tissues, including skeletal muscle and nervous tissue, and play important roles such as scavenging reactive oxygen species and quenching reactive aldehydes. We have demonstrated several reactions between imidazole dipeptides (namely, carnosine, and anserine) and a lipid peroxide-derived reactive aldehyde 4-oxo-2(E)-nonenal. Seven carnosine adducts and two anserine adducts were characterized using liquid chromatography/electrospray ionization-multiple-stage mass spectrometry. Adduct formation occurred between imidazole dipeptides and 4-oxo-2(E)-nonenal mainly through Michael addition, Schiff base formation, and/or Paal-Knorr reaction. The reactions were much more complicated than the reaction with a similar lipid peroxide-derived reactive aldehyde, 4-hydroxy-2(E)-nonenal.


Subject(s)
Aldehydes/chemistry , Dipeptides/chemistry , Imidazoles/chemistry , Mass Spectrometry , Molecular Structure
11.
Anal Bioanal Chem ; 410(16): 3847-3857, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29654341

ABSTRACT

Candidate drugs that can be metabolically transformed into reactive electrophilic products, such as epoxides, quinones, and nitroso compounds, are of special concern because subsequent covalent binding to bio-macromolecules can cause adverse drug reactions, such as allergic reactions, hepatotoxicity, and genotoxicity. Several strategies have been reported for screening reactive metabolites, such as a covalent binding assay with radioisotope-labeled drugs and a trapping method followed by LC-MS/MS analyses. Of these, a trapping method using glutathione is the most common, especially at the early stage of drug development. However, the cysteine of glutathione is not the only nucleophilic site in vivo; lysine, histidine, arginine, and DNA bases are also nucleophilic. Indeed, the glutathione trapping method tends to overlook several types of reactive metabolites, such as aldehydes, acylglucuronides, and nitroso compounds. Here, we introduce an alternate way for screening reactive metabolites as follows: A mixture of the light and heavy isotopes of simplified amino acid motifs and a DNA motif is used as a biomimetic trapping cocktail. This mixture consists of [2H0]/[2H3]-1-methylguanidine (arginine motif, Δ 3 Da), [2H0]/[2H4]-2-mercaptoethanol (cysteine motif, Δ 4 Da), [2H0]/[2H5]-4-methylimidazole (histidine motif, Δ 5 Da), [2H0]/[2H9]-n-butylamine (lysine motif, Δ 9 Da), and [13C0,15N0]/[13C1,15N2]-2'-deoxyguanosine (DNA motif, Δ 3 Da). Mass tag triggered data-dependent acquisition is used to find the characteristic doublet peaks, followed by specific identification of the light isotope peak using MS/MS. Forty-two model drugs were examined using an in vitro microsome experiment to validate the strategy. Graphical abstract Biomimetic trapping cocktail to screen reactive metabolites.


Subject(s)
Biomimetic Materials/metabolism , Microsomes, Liver/metabolism , Pharmaceutical Preparations/metabolism , Tandem Mass Spectrometry/methods , Amino Acid Motifs , Animals , Biomimetic Materials/chemistry , Biomimetics/methods , Chromatography, Liquid/methods , Glutathione/metabolism , Nucleotide Motifs , Rats , Spectrometry, Mass, Electrospray Ionization/methods
12.
PLoS One ; 13(4): e0196050, 2018.
Article in English | MEDLINE | ID: mdl-29672562

ABSTRACT

Pyridoxamine (PM) is a promising drug candidate for treating various chronic conditions/diseases in which oxidative stress and carbonyl compounds are important factors affecting pathogenicity. These abilities of PM are mainly attributed to its inhibition of advanced glycation and lipoxidation end product formation, by scavenging reactive carbonyl species. PM might therefore prevent protein damage from lipid hydroperoxide-derived aldehydes such as 4-oxo-2(E)-nonenal (ONE) and 4-hydroxy-2(E)-nonenal (HNE) by trapping them. It was previously reported that PM reacts with ONE to produce pyrrolo-1,3-oxazine (PO8) through the formation of pyrido-1,3-oxazine (PO1/PO2). In this study, we found that ONE and HNE yield an identical product containing a pyrrole ring (PO7, PH2) upon reaction with PM. The structure of PO7/PH2 was shown by LC-MS and NMR analyses to be 1-(2-hydroxy-6-hydroxymethyl-3-methylpyridin-4-ylmethyl)-2-pentylpyrrole. PO1, PO7/PH2, and PO8 were the main stable PM-ONE/HNE adducts. In the incubation of human serum albumin (HSA) with ONE or HNE, Lys residues provided the most favorable modification sites for both aldehydes, and the number of HNE-modified sites was higher than that of ONE-modified sites. When HSA was allowed to react with a linoleic acid hydroperoxide in the presence of ascorbic acid, ONE modified more residues (10 Lys, 3 His, 2 Arg) than did HNE (8 His, 2 Lys), indicating the relative reactivity of aldehydes towards amino acid residues. Upon treatment with increasing concentrations of PM, the concentrations of ONE-modified HSA peptides, but not of HNE-modified peptides, were reduced significantly and dose-dependently. Concomitantly, the formation of PM-ONE adducts increased in a dose-dependent manner. The inhibition effect of PM was also confirmed in the cell system subjected to oxidative stress. Our results demonstrate that PM can inhibit lipid hydroperoxide-derived damage to proteins by trapping ONE preferentially, and the resulting PM-ONE adducts can be used as a dosimeter for ONE production to determine the levels of lipid peroxidation.


Subject(s)
Lipid Peroxides/metabolism , Pyridoxamine/pharmacology , Serum Albumin, Human/metabolism , Chromatography, Liquid , Hydrogen Peroxide , Lipid Peroxidation , Lipid Peroxides/chemistry , Magnetic Resonance Spectroscopy , Oxidative Stress , Serum Albumin, Human/chemistry , Tandem Mass Spectrometry
13.
Anal Bioanal Chem ; 409(23): 5523-5532, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28710515

ABSTRACT

Monoclonal antibody-based therapeutic agents (antibody drugs) have attracted considerable attention as a new type of drug. Concomitantly, the use of quantitative approaches for characterizing antibody drugs, such as liquid chromatography (LC)-mass spectrometry (MS), has increased. Generally, selective quantification of antibody drugs is done using unique peptides from variable regions (V H and V L) as surrogate peptides. Further, numerous internal standards (ISs) such as stable isotope-labeled (SIL)-intact proteins and SIL-surrogate peptides are used. However, developing LC-MS methodology for characterizing antibody drugs is time-consuming and costly. Therefore, LC-MS is difficult to apply for this purpose, particularly during the drug discovery stage when numerous candidates must be evaluated. Here, we demonstrate an efficient approach to developing a quantitative LC/electrospray ionization (ESI)-selected reaction monitoring (SRM)/MS method for characterizing antibody drugs. The approach consists of the following features: (i) standard peptides or SIL-IS are not required; (ii) a peptide from the homologous monoclonal antibody serves as an IS; (iii) method development is monitored using a spiked plasma sample and one quantitative MS analysis; and (iv) three predicted SRM assays are performed to optimize quantitative SRM conditions such as transition, collision energy, and declustering potential values. Using this strategy, we developed quantitative SRM methods for infliximab, alemtuzumab, and bevacizumab with sufficient precision (<20%)/accuracy (<±20%) for use in the drug discovery stage. We have also demonstrated that choosing a higher homologous peptide pair (from analyte mAb/IS mAb) is necessary to obtain the sufficient precision and accuracy. Graphical abstract ᅟ.


Subject(s)
Antibodies, Monoclonal/analysis , Biological Products/analysis , Chromatography, Liquid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Humans , Reference Standards
14.
J Proteomics ; 166: 101-114, 2017 08 23.
Article in English | MEDLINE | ID: mdl-28735093

ABSTRACT

Lipid hydroperoxide-mediated modifications of proteins are receiving increasing attention because of their possible involvement in various degenerative diseases. These biological effects are attributed to the ability of lipid peroxidation-derived aldehydes to react with the nucleophilic sites of proteins. Here we describe a methodology involving metabolic labeling coupled with mass spectrometry-based proteomic analysis that enables global screening of lipid hydroperoxide-mediated protein modifications in a cell system. The lipidome of MCF-7 cells was labeled by incubating the cells with 1.4µM [13C18]-linoleic acid (LA) until the LA to [13C18]-LA ratio became 1:1. This approach was termed SILFAC (stable isotope labeling by fatty acids in cell culture). Analysis of the cellular phospholipids indicated that [13C18]-LA was incorporated quantitatively. The labeled cells were subjected to oxidative stress using a calcium ionophore and l-ascorbic acid, which promote the generation of reactive aldehydes from cellular LA and [13C18]-LA. After protein extraction and digestion with trypsin, isotope pattern dependent MS was used to analyze peptides modified by 1:1 ratios of the 12C and 13C aldehyde isomers. Using the current methodology, we identified the major lipid hydroperoxide-mediated modifications to proteins in MCF-7 cells without the need for chemical labeling or further affinity purification. SIGNIFICANCE: Lipid peroxidation-derived aldehydes (LPDAs) such as 4-oxo-2(E)-nonenal and 4-hydroxy-2(E)-nonenal can readily react with proteins and peptides to produce a variety of covalent modifications and cross-linkages, resulting in protein dysfunction and altered gene regulation. Various analytical approaches have therefore been developed to detect and characterize protein modifications mediated by LPDAs. However, most of the methods are not specific for LPDA modifications or designed for proteins modified by a target aldehyde. Here we describe the coupling of stable isotope labeling by fatty acids in cell culture (SILFAC) with an isotope pattern dependent MS-based proteomic strategy to provide a global screening tool for the identification of lipid hydroperoxide-mediated protein modifications.


Subject(s)
Fatty Acids/metabolism , Lipid Peroxides/metabolism , Protein Processing, Post-Translational , Proteomics/methods , Aldehydes/metabolism , Humans , Isotope Labeling/methods , Lipid Peroxidation , MCF-7 Cells , Oxidative Stress , Spectrometry, Mass, Electrospray Ionization
15.
Anal Bioanal Chem ; 408(19): 5379-92, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27236314

ABSTRACT

Proteins are continuously exposed to various reactive chemical species (reactive oxygen/nitrogen species, endogenous/exogenous aldehydes/epoxides, etc.) due to physiological and chemical stresses, resulting in various chemical modifications such as oxidation, nitration, glycation/glycoxidation, lipidation/lipoxidation, and adduct formation with drugs/chemicals. Abundant proteins with a long half-life, such as hemoglobin (Hb, t 1/2 63 days, ∼150 mg/mL), are believed to be major targets of reactive chemical species that reflect biological events. Chemical modifications on Hb have been investigated mainly by mechanistic in vitro experiments or in vivo/clinical experiments focused on single target modifications. Here, we describe an optimized LC/ESI-SRM/MS method to screen oxidized, nitrated, lipidated, and glycated sites on Hb. In vivo preliminary results suggest that this method can detect simultaneously the presence of oxidation (+16 Da) of α-Met(32), α-Met(76), ß-Met(55), and ß-Trp(15) and adducts of malondialdehyde (+54 Da) and glycation (+162 Da) of ß-Val(1) in a blood sample from a healthy volunteer. Graphical Abstract Screening chemical modifications on hemoglobin.


Subject(s)
Chromatography, Liquid/methods , Glycation End Products, Advanced/chemistry , Hemoglobins/chemistry , Lipids/chemistry , Nitrates/chemistry , Reactive Oxygen Species/chemistry , Tandem Mass Spectrometry/methods , Amino Acids/chemistry , Binding Sites , Blood Chemical Analysis/methods , Humans , Oxidation-Reduction , Protein Binding , Reproducibility of Results , Sensitivity and Specificity
16.
Data Brief ; 7: 100-6, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26958637

ABSTRACT

A mass spectrometry (MS)-based proteomic methodology was employed to monitor oxidative modifications in keratins, the main constituents of human skin ("Non-invasive proteomic analysis of human skin keratins: screening of methionine oxidation in keratins by mass spectrometry" [1], "UV irradiation-induced methionine oxidation in human skin keratins: mass spectrometry-based non-invasive proteomic analysis" [2]). Human skin proteins were obtained non-invasively by tape stripping and solubilized in sodium dodecyl sulfate (SDS) buffer, followed by purification and digestion using the filter-aided sample preparation method. The tryptic peptides were then analyzed by liquid chromatography (LC)/electrospray ionization (ESI)-MS, tandem MS (MS/MS), and LC/ESI-selected reaction monitoring (SRM)/MS. The MS/MS data were generated to confirm amino acid sequences and oxidation sites of tryptic peptides D(290)VDGAYMTK(298) (P1) and N(258)MQDMVEDYR(267) (P2), which contain the most susceptible oxidation sites (Met(259), Met(262), and Met(296) in K1 keratin) upon UVA irradiation [2]. Subsequently, quantitative determination of the relative oxidation levels of P1 and P1 [2] was achieved by LC/ESI-SRM/MS analyses of P1 and P2 together with their oxidized forms after exposure to UVA radiation or treatment with hydrogen peroxide (H2O2).

17.
Drug Metab Pharmacokinet ; 31(1): 27-34, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26826753

ABSTRACT

The N-termini of peptides and proteins can be subjected to highly diverse modifications, including acetylation, myristoylation, pyroglutamylation, and epimerization. These modifications affect protein stability, localization, and activity as well as alter the chemical properties of the N-terminus. Oxidative stress is known to induce the direct oxidation of amino acid side chains and peptide backbones in proteins. Alternatively, polyunsaturated fatty acids can be oxidized to lipid hydroperoxides, which further decompose to form highly reactive aldehydes such as 4-oxo-2(E)-nonenal (ONE) and 4-hydroxy-2(E)-nonenal (HNE). ONE and HNE modify various amino acid residues and induce protein cross-linking. However, there have been few studies on oxidative stress-mediated N-terminal modifications and the resulting functional changes. Our recent studies have reported several novel N-terminal modifications that result in the formation of α-ketoamide, transamination, cyclization, and epimerization. These novel N-terminal modifications are the focus of this review. We also outline recent advances in approaches for N-terminal analysis, which have been developed over the last several decades.


Subject(s)
Amino Acids/metabolism , Oxidative Stress/physiology , Proteins/metabolism , Animals , Humans , Oxidation-Reduction , Peptides/metabolism , Proteomics/methods , Tandem Mass Spectrometry/methods
18.
J Proteomics ; 133: 54-65, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26655505

ABSTRACT

Ultraviolet (UV) radiation is the major environmental factor that causes oxidative skin damage. Keratins are the main constituents of human skin and have been identified as oxidative target proteins. We have recently developed a mass spectrometry (MS)-based non-invasive proteomic methodology to screen oxidative modifications in human skin keratins. Using this methodology, UV effects on methionine (Met) oxidation in human skin keratins were investigated. The initial screening revealed that Met(259), Met(262), and Met(296) in K1 keratin were the most susceptible oxidation sites upon UVA (or UVB) irradiation of human tape-stripped skin. Subsequent liquid chromatography/electrospray ionization-MS and tandem MS analyses confirmed amino acid sequences and oxidation sites of tryptic peptides D(290)VDGAYMTK(298) (P1) and N(258)MQDMVEDYR(267) (P2). The relative oxidation levels of P1 and P2 increased in a time-dependent manner upon UVA irradiation. Butylated hydroxytoluene was the most effective antioxidant for artifactual oxidation of Met residues. The relative oxidation levels of P1 and P2 after UVA irradiation for 48 h corresponded to treatment with 100mM hydrogen peroxide for 15 min. In addition, Met(259) was oxidized by only UVA irradiation. The Met sites identified in conjunction with the current proteomic methodology can be used to evaluate skin damage under various conditions of oxidative stress. BIOLOGICAL SIGNIFICANCE: We demonstrated that the relative Met oxidation levels in keratins directly reflected UV-induced damages to human tape-stripped skin. Human skin proteins isolated by tape stripping were analyzed by MS-based non-invasive proteomic methodology. Met(259), Met(262), and Met(296) in K1 keratin were the most susceptible oxidation sites upon UV irradiation. Met(259) was oxidized by only UVA irradiation. Quantitative LC/ESI-SRM/MS analyses confirmed a time-dependent increase in the relative oxidation of target peptides (P1 and P2) containing these Met residues, upon UVA irradiation of isolated human skin. The relative oxidation levels of P1 and P2 along with the current proteomic methodology could be applied to the assessment of oxidative stress levels in skin after exposure to sunlight.


Subject(s)
Keratins , Skin , Ultraviolet Rays/adverse effects , Humans , Keratins/chemistry , Keratins/metabolism , Methionine/chemistry , Methionine/metabolism , Oxidation-Reduction/radiation effects , Skin/chemistry , Skin/metabolism
19.
Biol Reprod ; 93(4): 90, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26333992

ABSTRACT

Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is a type of membrane receptor with a seven-transmembrane structure. LGR4 is homologous to gonadotropin receptors, such as follicle-stimulating hormone receptor (Fshr) and luteinizing hormone/choriogonadotropin receptor (Lhcgr). Recently, it has been reported that Lgr4 is a membrane receptor for R-spondin ligands, which mediate Wnt/beta-catenin signaling. Defects of R-spondin homolog (Rspo1) and wingless-type MMTV integration site family, member 4 (Wnt4) cause masculinization of female gonads. We observed that Lgr4(-/-) female mice show abnormal development of the Wolffian ducts and somatic cells similar to that in the male gonads. Lgr4(-/-) female mice exhibited masculinization similar to that observed in Rspo1-deficient mice. In Lgr4(-/-) ovarian somatic cells, the expression levels of lymphoid enhancer-binding factor 1 (Lefl) and Axin2 (Axin2), which are target genes of Wnt/beta-catenin signaling, were lower than they were in wild-type mice. This study suggests that Lgr4 is critical for ovarian somatic cell specialization via the cooperative signaling of Rspo1 and Wnt/beta-catenin.


Subject(s)
Ovary/growth & development , Ovary/physiology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/physiology , Animals , Axin Protein/biosynthesis , Axin Protein/genetics , Estrous Cycle/genetics , Estrous Cycle/physiology , Female , Gonadal Steroid Hormones/biosynthesis , Lymphoid Enhancer-Binding Factor 1/biosynthesis , Lymphoid Enhancer-Binding Factor 1/genetics , Mice , Mice, Knockout , Ovary/cytology , Pregnancy , Sex Differentiation/genetics , Superovulation/genetics , Superovulation/physiology , Thrombospondins/genetics , Thrombospondins/physiology , Wnt Signaling Pathway/genetics , Wolffian Ducts/growth & development
20.
Chem Biol Interact ; 239: 87-99, 2015 Sep 05.
Article in English | MEDLINE | ID: mdl-26111765

ABSTRACT

Polyunsaturated fatty acids are highly susceptible to oxidation induced by reactive oxygen species and enzymes, leading to the formation of lipid hydroperoxides. The linoleic acid (LA)-derived hydroperoxide, 13-hydroperoxyoctadecadienoic acid (HPODE) undergoes homolytic decomposition to reactive aldehydes, 4-oxo-2(E)-nonenal (ONE), 4-hydroxy-2(E)-nonenal, trans-4,5-epoxy-2(E)-decenal (EDE), and 4-hydroperoxy-2(E)-nonenal (HPNE), which can covalently modify peptides and proteins. ONE and HNE have been shown to react with angiotensin (Ang) II (DRVYIHPF) and modify the N-terminus, Arg(2), and His(6). ONE-derived pyruvamide-Ang II (Ang P) alters the biological activities of Ang II considerably. The present study revealed that EDE and HPNE preferentially modified the N-terminus and His(6) of Ang II. In addition to the N-substituted pyrrole of [N-C4H2]-Ang II and Michael addition products of [His(6)(EDE)]-Ang II, hydrated forms were detected as major products, suggesting considerable involvement of the vicinal dihydrodiol (formed by epoxide hydration) in EDE-derived protein modification in vivo. Substantial amounts of [N-(EDE-H2O)]-Ang II isomers were also formed and their synthetic pathway might involve the tautomerization of a carbinolamine intermediate, followed by intramolecular cyclization and dehydration. The main HPNE-derived products were [His(6)(HPNE)]-Ang II and [N-(HPNE-H2O)]-Ang II. However, ONE, HNE, and malondialdehyde-derived modifications were dominant, because HPNE is a precursor of these aldehydes. A mixture of 13-HPODE and [(13)C18]-13-HPODE (1:1) was then used to determine the major modifications derived from LA peroxidation. The characteristic doublet (1:1) observed in the mass spectrum and the mass difference of the [M+H](+) doublet aided the identification of Ang P (N-terminal α-ketoamide), [N-ONE]-Ang II (4-ketoamide), [Arg(2)(ONE-H2O)]-Ang II, [His(6)(HNE)]-Ang II (Michael addition product), [N-C4H2]-Ang II (EDE-derived N-substituted pyrrole), [His(6)(HPNE)]-Ang II, [N-(9,12-dioxo-10(E)-dodecenoic acid)]-Ang II, and [His(6)(9-hydroxy-12-oxo-10(E)-decenoic acid)]-Ang II as the predominant LA-derived modifications. These modifications could represent the majority of lipid-derived modifications to peptides and proteins in biological systems.


Subject(s)
Angiotensin II/chemistry , Linoleic Acids/chemistry , Lipid Peroxides/chemistry , Aldehydes/chemistry , Ascorbic Acid/chemistry , Aspartame/chemistry , Carbon Isotopes/chemistry , Epoxy Compounds/chemistry , Isomerism , Malondialdehyde/chemistry , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL