Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Front Plant Sci ; 15: 1369976, 2024.
Article En | MEDLINE | ID: mdl-38567133

Introduction: Cyanobacteria are typically of a size that can be observed under a microscope. Here, we present cyanobacteria of a size that can be observed with the naked eye. Arthrospira platensis NCB002 strain showed differentiated morphological characteristics compared to previously reported Arthrospira spp. Methods: Arthrospira platensis NCB002 was obtained by the UV irradiation of Arthrospira sp. NCB001, which was isolated from freshwater and owned by NCell Co., Ltd. A. platensis NIES-39 was obtained from the National Institute for Environmental Studies (Tsukuba, Japan). We used various analytical techniques to determine its overall characteristics. Results and discussion: The draft genome of strain NCB002 consists of five contigs comprising 6,864,973 bp with a G+C content of 44.3 mol%. The strain NCB002 had an average length of 11.69 ± 1.35 mm and a maximum of 15.15 mm, which is 23.4-50.5 times longer than the length (0.3-0.5 mm) of previously known Arthrospira spp., allowing it to be harvested using a thin sieve. Transcriptome analysis revealed that these morphological differences resulted from changes in cell wall formation mechanisms and increased cell division. Our results show that NCB002 has outstanding industrial value and provides a comprehensive understanding of it.

2.
Sci Total Environ ; 912: 169044, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38061645

Plethora of plastics are being used in current society, generating huge amounts of plastic waste. Non-biodegradability of conventional plastics is one of the main challenges to treat plastic waste. In an effort to increase the efficiency of plastic waste treatment, biodegradable plastics have gained attention. Although the use of biodegradable plastics has been increased, their potential effects on the environments are not fully elucidated yet. In this study, the impacts of micro-sized non-biodegradable plastic (i.e., polystyrene (PS)) and micro-sized biodegradable plastics (i.e., polycaprolactone (PCL) and polylactic acid (PLA)) on Microcystis aeruginosa were investigated. Regardless of microplastic (MP) types, MP treatments inhibited the growth of M. aeruginosa at the beginning (4 days) while significant dose-dependent effect was not observed in the range of 0.1 to 10 mg/L. However, after long-term exposure (12 days), micro-sized biodegradable plastics stimulated the growth of M. aeruginosa (up to 73 % increase compared to the control). The photosynthetic activity showed a similar trend to the cell growth. The MP treatments induced the production of extracellular polymeric substances (EPS). Indeed, micro-sized PCL and PLA stimulated the production of protein compounds in EPS. These might have affected the releases of chemicals from PCL and PLA, suggesting that the chemicals in biodegradable plastic leachates would promote the growth of M. aeruginosa in long-term exposure. The MP treatments also induced cyanotoxin (microcystin-LR) productions. Our results give a new insight into the cyanobacterial blooming and suggest a novel relationship between harmful algal blooms (HABs) and biodegradable plastics.


Biodegradable Plastics , Microcystis , Plastics , Polyesters , Microplastics , Polystyrenes/toxicity
3.
Sensors (Basel) ; 22(13)2022 Jun 22.
Article En | MEDLINE | ID: mdl-35808206

In this paper, we proposed an integrated microfluidic device that could demonstrate the non-contact, label-free separation of particles and cells through the combination of inertial microfluidics and acoustophoresis. The proposed device integrated two microfluidic chips which were a PDMS channel chip on top of the silicon-based acoustofluidic chip. The PDMS chip worked by prefocusing the particles/cells through inducing the inertial force of the channel structure. The connected acoustofluidic chips separated particles based on their size through an acoustic radiation force. In the serpentine-shaped PDMS chip, particles formed two lines focusing in the channel, and a trifugal-shaped acoustofluidic chip displaced and separated particles, in which larger particles focused on the central channel and smaller ones moved to the side channels. The simultaneous fluidic works allowed high-efficiency particle separation. Using this novel acoustofluidic device with an inertial microchannel, the separation of particles and cells based on their size was presented and analyzed, and the efficiency of the device was shown. The device demonstrated excellent separation performance with a high recovery ratio (up to 96.3%), separation efficiency (up to 99%), and high volume rate (>100 µL/min). Our results showed that integrated devices could be a viable alternative to current cell separation based on their low cost, reduced sample consumption and high throughput capability.


Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Acoustics , Cell Separation , Microfluidic Analytical Techniques/methods , Microfluidics
4.
Bioresour Technol ; 344(Pt A): 126206, 2022 Jan.
Article En | MEDLINE | ID: mdl-34715342

The interest in developing microalgae for industrial use has been increasing because of concerns about the depletion of petroleum resources and securing sustainable energy sources. Microalgae have high biomass productivity and short culture periods. However, despite these advantages, various barriers need to be overcome for industrial applications. Microalgal cultivation has a high unit price, thus rendering industrial application difficult. It is indispensably necessary to co-produce their primary and secondary metabolites to compensate for these shortcomings. In this regard, this article reviews the following aspects, (1) co-production of primary and secondary metabolites in microalgae, (2) induction methods for the promotion of the biosynthesis of secondary metabolites, and (3) perspectives on the co-production and co-extraction of primary and secondary metabolites. This paper presents various approaches for producing useful metabolites from microalgae and suggests strategies that can be utilized for the co-production of primary and secondary metabolites.


Microalgae , Biofuels , Biomass
...