Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Physiol ; 239(6): e31245, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38497504

ABSTRACT

Parathyroid hormone (PTH) serves dual roles in bone metabolism, exhibiting both anabolic and catabolic effects. The anabolic properties of PTH have been utilized in the treatment of osteoporosis with proven efficacy in preventing fractures. Despite these benefits, PTH can be administered therapeutically for up to 2 years, and its use in patients with underlying malignancies remains a subject of ongoing debate. These considerations underscore the need for a more comprehensive understanding of the underlying mechanisms. p21-activated kinase 4 (PAK4) is involved in bone resorption and cancer-associated osteolysis; however, its role in osteoblast function and PTH action remains unknown. Therefore, in this study, we aimed to clarify the role of PAK4 in osteoblast function and its effects on PTH-induced anabolic activity. PAK4 enhanced MC3T3-E1 osteoblast viability and proliferation and upregulated cyclin D1 expression. PAK4 also augmented osteoblast differentiation, as indicated by increased mineralization found by alkaline phosphatase and Alizarin Red staining. Treatment with PTH (1-34), an active PTH fragment, stimulated PAK4 expression and phosphorylation in a protein kinase A-dependent manner. In addition, bone morphogenetic protein-2 (which is known to promote bone formation) increased phosphorylated PAK4 (p-PAK4) and PAK4 levels. PAK4 regulated the expression of both phosphorylated and total ß-catenin, which are critical for osteoblast proliferation and differentiation. Moreover, p-PAK4 directly interacted with ß-catenin, and disruption of ß-catenin's binding to T-cell factor impaired PAK4- and PTH-induced osteoblast differentiation. Our findings elucidate the effect of PAK4 on enhancing bone formation in osteoblasts and its pivotal role in the anabolic activity of PTH mediated through its interaction with ß-catenin. These insights improve the understanding of the mechanisms underlying PTH activity and should inform the development of more effective and safer osteoporosis treatments.


Subject(s)
Cell Differentiation , Cell Proliferation , Osteoblasts , Parathyroid Hormone , beta Catenin , p21-Activated Kinases , Animals , Humans , Mice , beta Catenin/metabolism , beta Catenin/genetics , Calcification, Physiologic/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclin D1/metabolism , Cyclin D1/genetics , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteogenesis/drug effects , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Parathyroid Hormone/pharmacology , Parathyroid Hormone/metabolism , Phosphorylation/drug effects , Signal Transduction/drug effects , Cells, Cultured
2.
J Mol Endocrinol ; 68(4): 195-207, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35255002

ABSTRACT

During bone formation, mesenchymal progenitor cells mature into bone-forming osteoblasts after undergoing several stages of differentiation. Impaired bone formation is a predominant finding in glucocorticoid (GC)-induced osteoporosis (GIO). Osteoblasts at different stages of maturation can be affected by excessive endogenous or therapeutic GCs. Sex-determining region Y-box 2 (SOX2) is normally expressed in immature osteoblasts, but its overexpression can suppress osteoblast differentiation. This study aimed to evaluate whether GC affects SOX2 expression in osteoblasts, and whether SOX2 contributes to GC-induced inhibition of osteoblast differentiation. Treatment with GCs such as dexamethasone (Dex) or hydrocortisone enhanced SOX2 expression. Silencing SOX2 improved inhibition of GC-induced osteoblast differentiation, whereas SOX2 overexpression decreased mineralized nodule formation and RUNX2 and Osterix expression in MC3T3-E1 cells. On the contrary, when C3H10T1/2 uncommitted mesenchymal stem cells were subjected to SOX2 overexpression, RUNX2 expression increased. As a mechanism of Dex-induced SOX2 upregulation in preosteoblasts, we found that the STAT3 pathway or GC receptor (GR) is involved, using a GR antagonist, STAT3 regulators, and chromatin immunoprecipitation assays. Moreover, mice treated with Dex for 4 weeks showed a notable increase in SOX2 expression in the bones and an increased ratio of procollagen type 1 N-terminal propeptide to osteocalcin in the plasma than in control mice. This study demonstrated that GC enhances SOX2 expression in vitro in osteoblast and in vivo in the mice bone, which affects bone-forming activity differently depending on the differentiation stage of osteoblast-lineage cells. Our results provide new insights into prevention and treatment against impaired bone formation in GIO.


Subject(s)
Glucocorticoids , Mesenchymal Stem Cells , Osteoblasts , SOXB1 Transcription Factors , Animals , Cell Differentiation , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Dexamethasone/pharmacology , Glucocorticoids/pharmacology , Mesenchymal Stem Cells/cytology , Mice , Osteoblasts/cytology , Osteogenesis/genetics , SOXB1 Transcription Factors/genetics
3.
FEBS Lett ; 595(19): 2493-2503, 2021 10.
Article in English | MEDLINE | ID: mdl-34536973

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) can lead to hepatocellular carcinoma (HCC). The level of the transcription factor SOX2 correlates with HCC progression, but its role in fat accumulation remains unclear. Here, a high-fat diet, with and without fructose, significantly upregulated SOX2 in murine liver tissue. Treatment with free fatty acids (FFAs) and fructose upregulated SOX2 in murine FL83B hepatocytes. SOX2 overexpression or knockdown regulated triglyceride synthesis and lipid accumulation after FFA stimulation. CD36, a fatty acid transporter, and Yes-associated protein (YAP), a downstream molecule of the Hippo signaling pathway, were upregulated by FFA/fructose in vivo and in vitro. Transcriptional regulation of CD36 by SOX2 suggested the involvement of CD36 in SOX2-mediated hepatic steatosis. Thus, SOX2 may be a target to prevent NAFLD development.


Subject(s)
CD36 Antigens/metabolism , Gene Expression Regulation , Non-alcoholic Fatty Liver Disease/metabolism , SOXB1 Transcription Factors/metabolism , Animals , Disease Progression , Mice
SELECTION OF CITATIONS
SEARCH DETAIL