Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 11(1): 5937, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33230139

ABSTRACT

Magnetic and spintronic media have offered fundamental scientific subjects and technological applications. Magneto-optic Kerr effect (MOKE) microscopy provides the most accessible platform to study the dynamics of spins, magnetic quasi-particles, and domain walls. However, in the research of nanoscale spin textures and state-of-the-art spintronic devices, optical techniques are generally restricted by the extremely weak magneto-optical activity and diffraction limit. Highly sophisticated, expensive electron microscopy and scanning probe methods thus have come to the forefront. Here, we show that extreme anti-reflection (EAR) dramatically improves the performance and functionality of MOKE microscopy. For 1-nm-thin Co film, we demonstrate a Kerr amplitude as large as 20° and magnetic domain imaging visibility of 0.47. Especially, EAR-enhanced MOKE microscopy enables real-time detection and statistical analysis of sub-wavelength magnetic domain reversals. Furthermore, we exploit enhanced magneto-optic birefringence and demonstrate analyser-free MOKE microscopy. The EAR technique is promising for optical investigations and applications of nanomagnetic systems.

2.
Nat Mater ; 17(6): 509-513, 2018 06.
Article in English | MEDLINE | ID: mdl-29555998

ABSTRACT

Magnetic torques generated through spin-orbit coupling1-8 promise energy-efficient spintronic devices. For applications, it is important that these torques switch films with perpendicular magnetizations without an external magnetic field9-14. One suggested approach 15 to enable such switching uses magnetic trilayers in which the torque on the top magnetic layer can be manipulated by changing the magnetization of the bottom layer. Spin currents generated in the bottom magnetic layer or its interfaces transit the spacer layer and exert a torque on the top magnetization. Here we demonstrate field-free switching in such structures and show that its dependence on the bottom-layer magnetization is not consistent with the anticipated bulk effects 15 . We describe a mechanism for spin-current generation16,17 at the interface between the bottom layer and the spacer layer, which gives torques that are consistent with the measured magnetization dependence. This other-layer-generated spin-orbit torque is relevant to energy-efficient control of spintronic devices.

3.
Nat Nanotechnol ; 11(10): 878-884, 2016 10.
Article in English | MEDLINE | ID: mdl-27428279

ABSTRACT

Spin-orbit torques arising from the spin-orbit coupling of non-magnetic heavy metals allow electrical switching of perpendicular magnetization. However, the switching is not purely electrical in laterally homogeneous structures. An extra in-plane magnetic field is indeed required to achieve deterministic switching, and this is detrimental for device applications. On the other hand, if antiferromagnets can generate spin-orbit torques, they may enable all-electrical deterministic switching because the desired magnetic field may be replaced by their exchange bias. Here we report sizeable spin-orbit torques in IrMn/CoFeB/MgO structures. The antiferromagnetic IrMn layer also supplies an in-plane exchange bias field, which enables all-electrical deterministic switching of perpendicular magnetization without any assistance from an external magnetic field. Together with sizeable spin-orbit torques, these features make antiferromagnets a promising candidate for future spintronic devices. We also show that the signs of the spin-orbit torques in various IrMn-based structures cannot be explained by existing theories and thus significant theoretical progress is required.

SELECTION OF CITATIONS
SEARCH DETAIL