Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Dent Mater J ; 43(2): 269-275, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38417859

ABSTRACT

We aimed to improve the biocompatibility and osteoinductive potential of Ti implants using a simulated intraoral hydroxyapatite (HAp) coating. We devised a novel surface treatment for aggressive induction of osteoblast adhesion and bone regeneration on the implant surface. A thin α-tricalcium phosphate (α-TCP) film was deposited on the implant surface using a pulsed Er:YAG laser. The coating was converted to HAp through artificial saliva immersion, which was confirmed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). SEM showed needle-like HAp crystals on the Ti disks and sandblasted implant surfaces after immersion in artificial saliva for 96 h. Microcomputed tomography and histological evaluation 4 and 8 weeks after implantation into beagle dog mandibles showed that the HAp-coated implant was biocompatible and exhibited superior osteoinduction compared to that of sandblasted implants. Coating the implant surface with HAp using an Er:YAG laser has potential as a new method of the implant-surface debridement.


Subject(s)
Dental Implants , Lasers, Solid-State , Dogs , Animals , Durapatite/pharmacology , Durapatite/chemistry , Saliva, Artificial , X-Ray Microtomography , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Titanium/pharmacology , Titanium/chemistry , Microscopy, Electron, Scanning , Surface Properties
2.
J Dent Sci ; 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37360954

ABSTRACT

Abstract Background/purpose: Coronavirus disease 2019 (COVID-19) has influenced the dental education in Osaka Dental University. The purpose of this study was to summarize the impact of COVID-19 on student performance and the current more appropriate teaching methods by comparing the changes in various oral pathology exam results before and after COVID-19. Materials and methods: The experimental and control groups consisted of second year students in the department of dentistry at our university for the years 2019 (136 people) and 2020 (125 people). The impact of different teaching methods on student performance was compared by calculating the mean scores and percentage of failures on various exams and whether or not class credits were earned between the two years. A t test was used to determine statistical significance. Results: The mean scores on the mini-tests were lower in 2020 than in 2019, while the average score of the intermediate exam and the number of students receiving class credits were higher. The mean scores on the practical and unit exams were not statistically significant between the years, but the failure rate on both exams was higher in 2019 than in 2020. Conclusion: COVID-19 had impacts on student performance. A comparison of the mean scores on the exams revealed that the use of microscopy, oral questions, and online animations contributed to improved performance on different exams. Therefore, to promote students' understanding and retention of memorized knowledge of oral pathology, the use of microscopes will be resumed whenever possible, as well as continuation with oral questions and online animations.

3.
Dent Mater J ; 42(3): 319-326, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36858627

ABSTRACT

Bone regeneration requires cells, growth factors, and scaffolds that should have biocompatibility, porosity, and physical strength. Therefore, coral granules (CG) with diameters of 600-1,000 µm were prepared as a potential graft material from cultured edaphic thermostable corals. X-ray and electron microscopy characterization revealed that CGs were porous and permeable with lumen diameters of approximately 200 µm. Human periodontal ligament fibroblasts showed significantly increased mitochondrial activity in culture seven days after adding CG. After CG filling into an experimentally created one-wall infrabony defect in a beagle dog jawbone, the defect almost completely disappeared within approximately 8 weeks, and bone tissue growth was observed in the replacement area. This could indicate extremely rapid healing of a bone defect previously considered incapable of self-healing. Based on stable supply of cultured coral (Montipora digitata), CG is potentially an ideal replacement material for alveolar and jawbone defects.


Subject(s)
Alveolar Bone Loss , Bone Substitutes , Exoskeleton Device , Dogs , Humans , Animals , Bone Substitutes/pharmacology , Guided Tissue Regeneration, Periodontal , Alveolar Bone Loss/surgery , Bone Regeneration , Bone and Bones
4.
Materials (Basel) ; 13(21)2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33114595

ABSTRACT

The Bio-C Sealer is a recently developed high-plasticity, calcium-silicate-based, ready-to-use material. In the present study, chemical elements of the materials were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The biocompatibility of the Bio-C Sealer was investigated using cytotoxicity tests and histological responses in the roots of dogs' teeth. XRD, SEM, and FTIR produced hydrated calcium silicate in the presence of water molecules. In addition, FTIR showed the formation of calcium hydroxide and polyethylene glycol, a dispersing agent. The 1:4 dilutions of Bio-C Sealer presented weaker cytotoxicity than the Calcipex II in an in vitro system using the V-79 cell line. After 90 d, the periradicular tissue response of beagle dog roots was histologically evaluated. Absence of periradicular inflammation was reported in 17 of the 18 roots assessed with the Bio-C Sealer, whereas mature vertical periodontal ligament fibers were observed in the apical root ends filled with the Bio-C Sealer. Based on these results and previous investigations, the Bio-C Sealer is recommended as an effective root-end filling material. These results are relevant for clinicians considering the use of Bio-C Sealer for treating their patients.

5.
Brain Res ; 1063(2): 151-8, 2005 Nov 30.
Article in English | MEDLINE | ID: mdl-16288729

ABSTRACT

In the present study, the activation of extracellular signal-regulated kinase (ERK) in the rostral ventromedial medulla (RVM) following the injection of complete Freund's adjuvant (CFA) into the rat hindpaw was examined in order to clarify the mechanisms underlying the dynamic changes in the descending pain modulatory system after peripheral inflammation. Phospho-extracellular signal-regulated kinase-immunoreactive (p-ERK-IR) neurons were observed in the nucleus raphe magnus (NRM) and nucleus reticularis gigantocellularis pars alpha (GiA). Inflammation induced the activation of ERK in the RVM, with a peak at 7 h after the injection of CFA into the hindpaw and a duration of 24 h. In the RVM, the number of p-ERK-IR neurons per section in rats killed at 7 h after CFA injection (14.2 +/- 1.7) was significantly higher than that in the control group (4.5 +/- 0.9) [P < 0.01]. At 7 h after CFA injection, about 60% of p-ERK-IR neurons in the RVM were serotonergic neurons. The percentage of RVM serotonergic neurons that are also p-ERK positive in the rats with inflammation (20.5% +/- 2.3%) was seven times higher than that in control rats (2.7% +/- 1.4%) [P < 0.01]. These findings suggest that inflammation-induced activation of ERK in the RVM may be involved in the plasticity in the descending pain modulatory system following inflammation.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Inflammation/physiopathology , MAP Kinase Signaling System/immunology , Medulla Oblongata/immunology , Medulla Oblongata/physiopathology , Adjuvants, Immunologic , Animals , Freund's Adjuvant , Hindlimb , Male , Nociceptors/immunology , Pain/immunology , Pain/physiopathology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL