Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Comp Immunol ; 159: 105216, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38901502

ABSTRACT

Lambs harboring the Hb-AA ß-globin haplotype present improved cell-mediated responses and increased resistance against Haemonchus contortus infection. The aim of the present study was to compare the effect of sex and ß-globin haplotypes on specific humoral responses and phenotypes of resistance during H. contortus infection in Morada Nova sheep. As expected, females displayed stronger resistance during the first and second experimental challenges. Differential systemic humoral immune responses were observed comparing sex groups, in which higher levels of specific antibodies targeting 24 kDa excretory-secretory (ES24) protein of H. contortus of IgG and IgM antibodies were respectively observed as predominant isotypes in males and females. The IgM levels were significantly correlated with phenotypes of resistance, evaluated by packed cell volume and fecal egg counts. To our knowledge this is the first study reporting divergent humoral responses profiles to H. contortus infection between male and female sheep. The impact of ß-globin haplotypes was less pronounced in females compared to males. Notably, only males showed significant weight differences across haplotypes, with Hb-AA lambs being the heaviest. Additionally, Hb-AA males had significantly higher PCV (indicating better red blood cell health) and lower FEC (indicating lower parasite burden). These findings suggest a more pronounced effect of ß-globin polymorphisms on H. contortus infection in males, potentially due to their generally weaker resistance compared to females. This study highlights the importance of sex and ß-globin haplotypes in shaping immune responses to H. contortus infection. Specifically, IgM antibodies targeting the ES24 protein appear to play a crucial role in host-parasite interactions and may hold promise for therapeutic development.


Subject(s)
Haemonchiasis , Haemonchus , Immunity, Humoral , Polymorphism, Genetic , Sheep Diseases , beta-Globins , Animals , Female , Male , Antibodies, Helminth/immunology , Antigens, Helminth/immunology , beta-Globins/genetics , beta-Globins/immunology , Disease Resistance/immunology , Disease Resistance/genetics , Haemonchiasis/veterinary , Haemonchiasis/immunology , Haemonchiasis/parasitology , Haemonchus/immunology , Haplotypes , Helminth Proteins/immunology , Helminth Proteins/genetics , Helminth Proteins/metabolism , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Immunoglobulin M/immunology , Immunoglobulin M/metabolism , Sex Factors , Sheep/immunology , Sheep Diseases/immunology , Sheep Diseases/parasitology , Sheep Diseases/genetics
2.
Parasit Vectors ; 17(1): 102, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429820

ABSTRACT

BACKGROUND: The integration of molecular data from hosts, parasites, and microbiota can enhance our understanding of the complex biological interactions underlying the resistance of hosts to parasites. Haemonchus contortus, the predominant sheep gastrointestinal parasite species in the tropics, causes significant production and economic losses, which are further compounded by the diminishing efficiency of chemical control owing to anthelmintic resistance. Knowledge of how the host responds to infection and how the parasite, in combination with microbiota, modulates host immunity can guide selection decisions to breed animals with improved parasite resistance. This understanding will help refine management practices and advance the development of new therapeutics for long-term helminth control. METHODS: Eggs per gram (EPG) of feces were obtained from Morada Nova sheep subjected to two artificial infections with H. contortus and used as a proxy to select animals with high resistance or susceptibility for transcriptome sequencing (RNA-seq) of the abomasum and 50 K single-nucleotide genotyping. Additionally, RNA-seq data for H. contortus were generated, and amplicon sequence variants (ASV) were obtained using polymerase chain reaction amplification and sequencing of bacterial and archaeal 16S ribosomal RNA genes from sheep feces and rumen content. RESULTS: The heritability estimate for EPG was 0.12. GAST, GNLY, IL13, MGRN1, FGF14, and RORC genes and transcripts were differentially expressed between resistant and susceptible animals. A genome-wide association study identified regions on chromosomes 2 and 11 that harbor candidate genes for resistance, immune response, body weight, and adaptation. Trans-expression quantitative trait loci were found between significant variants and differentially expressed transcripts. Functional co-expression modules based on sheep genes and ASVs correlated with resistance to H. contortus, showing enrichment in pathways of response to bacteria, immune and inflammatory responses, and hub features of the Christensenellaceae, Bacteroides, and Methanobrevibacter genera; Prevotellaceae family; and Verrucomicrobiota phylum. In H. contortus, some mitochondrial, collagen-, and cuticle-related genes were expressed only in parasites isolated from susceptible sheep. CONCLUSIONS: The present study identified chromosome regions, genes, transcripts, and pathways involved in the elaborate interactions between the sheep host, its gastrointestinal microbiota, and the H. contortus parasite. These findings will assist in the development of animal selection strategies for parasite resistance and interdisciplinary approaches to control H. contortus infection in sheep.


Subject(s)
Haemonchiasis , Haemonchus , Microbiota , Parasites , Sheep Diseases , Sheep/genetics , Animals , Parasites/genetics , Genome-Wide Association Study , Multiomics , Feces/parasitology , Sheep Diseases/parasitology , Haemonchiasis/parasitology , Parasite Egg Count
3.
Vet Parasitol ; 328: 110165, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38490159

ABSTRACT

The main objective of cattle breeders in tropical and subtropical regions is to acquire animals with taurine-productive traits adapted to the broad weather range of these regions. However, one of the main challenges on using taurine genetics in these areas is the high susceptibility of these animals to tick-borne diseases. Consequently, the present study evaluated from 10 November 2021-19 April 2022, the over 13 assessments, the Babesia bovis and Babesia bigemina DNA loads and the IgG anti-B. bovis and anti-B. bigemina levels in Angus (n = 17, 100% Taurine) and Ultrablack (n = 14, ∼82% taurine and 18% Zebu) calves. Data were analyzed using a multivariate mixed model with repeated measures of the same animal including the fixed effects of evaluation, genetic group, sex, Babesia spp., and their interactions. The repeatability values were estimated from the (co)variances matrix and expressed for each species. The correlations between the DNA loads (CNlog) and IgG titers (S/P) values for the two species were also estimated using the same model. Regarding the specific IgG antibody titers for both Babesia spp., no significant differences were observed between the two genetic groups. However, for B. bovis and B. bigemina DNA loads, Ultrablack calves presented significantly higher values than Angus calves. Under the conditions evaluated in this study, our findings suggest that the low percentage of Zebu genetic in the Ultrablack breed was insufficient to improve resistance against babesiosis. Further studies must demonstrate if the low percentages of Zebu genetics in Taurine breeds can modify the susceptibility to babesiosis infections.


Subject(s)
Babesia , Babesiosis , Cattle Diseases , Animals , Cattle , Babesiosis/parasitology , Babesiosis/immunology , Cattle Diseases/parasitology , Cattle Diseases/immunology , Babesia/genetics , Babesia/immunology , Female , Male , Genetic Background , Babesia bovis/genetics , Babesia bovis/immunology , Immunoglobulin G/blood , Disease Resistance/genetics
4.
Vet Parasitol ; 328: 110163, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513446

ABSTRACT

Gastrointestinal nematodes (GIN), especially Haemonchus contortus, represent a significant challenge for sheep production. Given the global concern about GIN anthelmintic resistance, alternative control methods able to reduce the dependence on these drugs are highly advisable. Since previous studies have shown that sheep carrying the Hb-A allele of ß-globin are more resistant to H. contortus, this study aimed to investigate the relationship between the different haplotypes (Hb-AA, Hb-AB and Hb-BB) and phenotypes in Santa Inês (SI), Texel (TX) and White Dorper (DO) breeds infected with H. contortus. Blood samples were collected from 180 ewes and 123 lambs of the three breeds for DNA extraction followed by qPCR using a hydrolysis probe to identify the ß-globin haplotypes. Phenotypic data, including fecal egg count (FEC), packed cell volume (PCV), FAMACHA score and body condition score for ewes and lambs, as well as weight gain for lambs, were collected. The genotypic frequencies of ß-globin for ewes and lambs were, respectively: 21.7% and 21.4% Hb-AA, 50% and 50% Hb-AB and 28.3% and 28.6% Hb-BB in SI; 0% and 0% Hb-AA, 18.6% and 9.4% Hb-AB and 81.4% and 90.6% Hb-BB in TX; and 0% and 0% Hb-AA, 13.1% and 0% Hb-AB and 86.9% and 100% Hb-BB in DO. In ewes, mean PCV differed (p<0.05) between the three haplotypes, with higher PCV in Hb-AA animals, followed by Hb-AB and Hb-BB. When considering each breed separately, SI Hb-AA ewes presented higher PCV (p<0.05), highlighting that even in a breed already considered resistant, animals with Hb-AA haplotype showed superior performance. Lambs with the Hb-AA haplotype exhibited a higher (p<0.05) mean PCV compared to those with Hb-AB and Hb-BB. The same pattern was found in SI when analyzing each breed separately. No significant association was found between ß-globin haplotypes and FEC, FAMACHA score, body condition score, or weight gain. Nevertheless, given that anemia is the major clinical sign of haemonchosis, our findings on PCV reinforce that sheep carrying the Hb-A allele of ß-globin are more tolerant to haemonchosis. This study may support the development of a valuable tool, targeting genetic selection for GIN control, reducing the dependence on anthelmintics and boosting sheep production worldwide.


Subject(s)
Haemonchiasis , Sheep Diseases , beta-Globins , Animals , Sheep , Sheep Diseases/parasitology , Sheep Diseases/genetics , beta-Globins/genetics , Haemonchiasis/veterinary , Haemonchiasis/parasitology , Female , Haplotypes , Polymorphism, Genetic , Haemonchus/genetics , Parasite Egg Count/veterinary , Feces/parasitology
5.
Res Vet Sci ; 168: 105122, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38194893

ABSTRACT

Molecular assays have been widely used for the detection and quantification of bovine babesiosis due to their high sensitivity and specificity. However, variations in the sensitivity of pathogen detection may occur depending on the selected target gene. Thus, this study aimed to compare the detection sensitivity (DS) of Babesia bovis and B. bigemina infection levels in artificially and naturally infected cattle using quantitative PCR (qPCR) and six target genes. For B. bovis, the merozoite surface antigen genes 2b and 2c (msa-2b and msa-2c), and the mitochondrial cytochrome b gene (cybmt) were used. For B. bigemina, the genes encoding the proteins associated with rhoptry 1c (rap-1c), rap-1a, and cybmt were used. Six bovines, free of babesiosis, were artificially infected with 1 × 10-8 red blood cells infected (iRBC) with B. bovis (n = 3) or 1 × 10-6B. bigemina iRBC (n = 3). The animals were evaluated daily until parasitemia was confirmed (≥ 2.0%). The quantity of iRBC present in each animal was determined by examining blood smears. Blood samples were then subjected to DNA extraction, serial dilution, and qPCR analysis to determine the DS of each target gene. In addition, 30 calves naturally infected by Babesia spp. were also evaluated using the same six target genes. Regarding the artificial infection, B. bovis cybmt showed 25-fold higher sensitivity than the msa-2b and msa-2c genes, while the B. bigemina cybmt exhibited 5-fold and 25-fold higher sensitivity than the rap-1a and rap-1c genes, respectively. The rap-1a gene was found to be 5 times more sensitive than the rap-1c gene, while the B. bovis msa-2b and msa-2c genes exhibited similar DS. The positive frequencies of naturally infected calves for the target cybmt, msa-2b, and msa-2c genes (B. bovis) were: 100%, 33.3% and 50%, while cybmt, rap-1a, and rap-1c genes (B. bigemina) were 90%, 83.3%, and 63.3%, respectively. This study may contribute to the selection of suitable genes for molecular monitoring of bovine babesiosis. Mitochondrial genes could be considered as an alternative to improve the sensitivity of B. bovis and B. bigemina detection using qPCR.


Subject(s)
Babesia bovis , Babesia , Babesiosis , Cattle Diseases , Animals , Cattle , Babesia/genetics , Babesia bovis/genetics , Babesiosis/diagnosis , Cattle Diseases/diagnosis , Protozoan Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL