Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Phys Rev Lett ; 123(14): 142502, 2019 Oct 04.
Article En | MEDLINE | ID: mdl-31702191

From detailed spectroscopy of ^{110}Cd and ^{112}Cd following the ß^{+}/electron-capture decay of ^{110,112}In and the ß^{-} decay of ^{112}Ag, very weak decay branches from nonyrast states are observed. The transition rates determined from the measured branching ratios and level lifetimes obtained with the Doppler-shift attenuation method following inelastic neutron scattering reveal collective enhancements that are suggestive of a series of rotational bands. In ^{110}Cd, a γ band built on the shape-coexisting intruder configuration is suggested. For ^{112}Cd, the 2^{+} and 3^{+} intruder γ-band members are suggested, the 0_{3}^{+} band is extended to spin 4^{+}, and the 0_{4}^{+} band is identified. The results are interpreted using beyond-mean-field calculations employing the symmetry conserving configuration mixing method with the Gogny D1S energy density functional and with the suggestion that the Cd isotopes exhibit multiple shape coexistence.

2.
Phys Rev Lett ; 116(11): 112501, 2016 Mar 18.
Article En | MEDLINE | ID: mdl-27035296

Two pairs of positive-and negative-parity doublet bands together with eight strong electric dipole transitions linking their yrast positive- and negative-parity bands have been identified in ^{78}Br. They are interpreted as multiple chiral doublet bands with octupole correlations, which is supported by the microscopic multidimensionally-constrained covariant density functional theory and triaxial particle rotor model calculations. This observation reports the first example of chiral geometry in octupole soft nuclei.

3.
Phys Rev Lett ; 109(4): 042301, 2012 Jul 27.
Article En | MEDLINE | ID: mdl-23006079

We report a precise determination of the (19)Ne half-life to be T(1/2)=17.262±0.007 s. This result disagrees with the most recent precision measurements and is important for placing bounds on predicted right-handed interactions that are absent in the current standard model. We are able to identify and disentangle two competing systematic effects that influence the accuracy of such measurements. Our findings prompt a reassessment of results from previous high-precision lifetime measurements that used similar equipment and methods.

4.
Phys Rev Lett ; 103(6): 062501, 2009 Aug 07.
Article En | MEDLINE | ID: mdl-19792555

Excited states in ;{152}Sm have been investigated with the ;{152}Sm(n,n;{'}gamma) reaction. The lowest four negative-parity band structures have been characterized in detail with respect to their absolute decay properties. Specifically, a new K;{pi} = 0;{-} band has been assigned with its 1;{-} band head at 1681 keV. This newly observed band has a remarkable similarity in its E1 transition rates for decay to the first excited K;{pi} = 0;{+} band at 684 keV to the lowest K;{pi} = 0;{-} band and its decay to the ground-state band. Based on these decay properties, as well as energy considerations, this new band is assigned as a K;{pi} = 0;{-} octupole excitation based on the K;{pi} = 0_{2};{+} state. An emerging pattern of repeating excitations built on the 0_{2};{+} level similar to those built on the ground state may indicate that ;{152}Sm is a complex example of shape coexistence rather than a critical point nucleus.

5.
Phys Rev Lett ; 97(6): 062504, 2006 Aug 11.
Article En | MEDLINE | ID: mdl-17026168

The low-spin structure of 93Nb has been studied using the (n,n'gamma) reaction at neutron energies ranging from 1.5 to 3 MeV and the 94Zr(p,2ngamma)93Nb reaction at bombarding energies from 11.5 to 19 MeV. States at 1779.7 and 1840.6 keV, respectively, are proposed as mixed-symmetry states associated with the pi2p(1/2)-1x(2(1),MS+,94Mo) coupling. These assignments are derived from the observed M1 and E2 transition strengths to the 2p(1/2)-1x(2(1)+,94Mo) symmetric one-phonon states, energy systematics, spins and parities, and comparison with shell model calculations.

...