Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 443: 338-50, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23202380

ABSTRACT

Lindane [γ-hexachlorocyclohexane (γ-HCH)] is an organochlorine pesticide with toxic effects on humans. It is bioaccumulative and can remain in soils for long periods, and although its use for crop spraying was banned in France in 1998, it is possible that residues from before this time remain in the soil. The RMQS soil monitoring network consists of soil samples from 2200 sites on a 16 km regular grid across France, collected between 2002 and 2009. We use 726 measurements of the Lindane concentration in these samples to (i) investigate the main explanatory factors for its spatial distribution across France, and (ii) map this distribution. Geostatistics provides an appropriate framework to analyze our spatial dataset, though two issues regarding the data are worth special consideration: first, the harmonization of two subsets of the data (which were analyzed using different measurement processes), and second, the large proportion of data from one of these subsets that fell below a limit of quantification. We deal with these issues using recent methodological developments in geostatistics. Results demonstrate the importance of land use and rainfall for explaining part of the variability of Lindane across France: land use due to the past direct input of Lindane on cropland and its subsequent persistence in the soil, and rainfall due to the re-deposition of volatilized Lindane. Maps show the concentrations to be generally largest in the north and northwest of France, areas of more intensive agricultural land. We also compare levels to some contamination thresholds taken from the literature, and present maps showing the probability of Lindane concentrations exceeding these thresholds across France. These maps could be used as guidelines for deciding which areas require further sampling before some possible remediation strategy could be applied.


Subject(s)
Hexachlorocyclohexane/analysis , Insecticides/analysis , Soil Pollutants/analysis , Climate , Environmental Monitoring , France , Hydrogen-Ion Concentration , Limit of Detection
2.
Int J Food Microbiol ; 98(1): 35-51, 2005 Jan 15.
Article in English | MEDLINE | ID: mdl-15617799

ABSTRACT

A comprehensive review of both the scientific literature and industry practices was undertaken to identify and quantify all sources of contamination throughout the entire poultry meat production chain by Salmonella spp. This information was used to develop a quantitative risk assessment (QRA) model for Salmonella in the production chain from the breeder farm to the chilled carcass. This was subsequently used as the basis on which to compare the merits of three approaches to QRA modelling in such systems. The original model used a Bayesian Network (BN). The second method was a Markov chain Monte Carlo (MCMC) approach, a numerical Bayesian technique which retained a similar network structure but allowed further development, such as the separation of variability and uncertainty. The third method was a more detailed simulation model. The BN responds immediately to changes, such as entering evidence, because it does not use simulation and can propagate information from any point in the network to all others by Bayesian inference. However, it requires all the variables to be discrete, which introduces errors if continuous variables have to be discretized. These errors can accumulate. The MCMC approach does not require discrete variables while retaining some of the properties of the BN model, such as the ability to draw inferences from evidence. Finally, the simulation offers greater flexibility, such as consideration of the individual carcass, but may be more complex to implement as a result and sacrifices the ability to propagate evidence.


Subject(s)
Food Contamination/prevention & control , Food Microbiology , Meat/microbiology , Models, Biological , Salmonella/growth & development , Animals , Bayes Theorem , Consumer Product Safety , Food Contamination/analysis , Food-Processing Industry/methods , Food-Processing Industry/standards , Humans , Monte Carlo Method , Prevalence , Probability , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL