Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Neurodegener ; 19(1): 64, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39238030

ABSTRACT

BACKGROUND: Microglial activation is one hallmark of Alzheimer disease (AD) neuropathology but the impact of the regional interplay of microglia cells in the brain is poorly understood. We hypothesized that microglial activation is regionally synchronized in the healthy brain but experiences regional desynchronization with ongoing neurodegenerative disease. We addressed the existence of a microglia connectome and investigated microglial desynchronization as an AD biomarker. METHODS: To validate the concept, we performed microglia depletion in mice to test whether interregional correlation coefficients (ICCs) of 18 kDa translocator protein (TSPO)-PET change when microglia are cleared. Next, we evaluated the influence of dysfunctional microglia and AD pathophysiology on TSPO-PET ICCs in the mouse brain, followed by translation to a human AD-continuum dataset. We correlated a personalized microglia desynchronization index with cognitive performance. Finally, we performed single-cell radiotracing (scRadiotracing) in mice to ensure the microglial source of the measured desynchronization. RESULTS: Microglia-depleted mice showed a strong ICC reduction in all brain compartments, indicating microglia-specific desynchronization. AD mouse models demonstrated significant reductions of microglial synchronicity, associated with increasing variability of cellular radiotracer uptake in pathologically altered brain regions. Humans within the AD-continuum indicated a stage-depended reduction of microglia synchronicity associated with cognitive decline. scRadiotracing in mice showed that the increased TSPO signal was attributed to microglia. CONCLUSION: Using TSPO-PET imaging of mice with depleted microglia and scRadiotracing in an amyloid model, we provide first evidence that a microglia connectome can be assessed in the mouse brain. Microglia synchronicity is closely associated with cognitive decline in AD and could serve as an independent personalized biomarker for disease progression.


Subject(s)
Alzheimer Disease , Brain , Cognitive Dysfunction , Microglia , Animals , Microglia/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mice , Cognitive Dysfunction/metabolism , Humans , Brain/metabolism , Brain/pathology , Disease Models, Animal , Positron-Emission Tomography , Receptors, GABA/metabolism , Male , Mice, Transgenic , Connectome/methods , Female
2.
Elife ; 132024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526524

ABSTRACT

During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.


Subject(s)
Hematopoiesis , Macrophages , Animals , Mice , Hematopoiesis/genetics , Hematopoietic Stem Cells , Cell Differentiation , Erythropoiesis , Liver , Stem Cell Niche/genetics
3.
Cell Rep ; 42(6): 112525, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37243592

ABSTRACT

Systemic inflammation is established as part of late-stage severe lung disease, but molecular, functional, and phenotypic changes in peripheral immune cells in early disease stages remain ill defined. Chronic obstructive pulmonary disease (COPD) is a major respiratory disease characterized by small-airway inflammation, emphysema, and severe breathing difficulties. Using single-cell analyses we demonstrate that blood neutrophils are already increased in early-stage COPD, and changes in molecular and functional neutrophil states correlate with lung function decline. Assessing neutrophils and their bone marrow precursors in a murine cigarette smoke exposure model identified similar molecular changes in blood neutrophils and precursor populations that also occur in the blood and lung. Our study shows that systemic molecular alterations in neutrophils and their precursors are part of early-stage COPD, a finding to be further explored for potential therapeutic targets and biomarkers for early diagnosis and patient stratification.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Animals , Mice , Neutrophils , Pulmonary Disease, Chronic Obstructive/drug therapy , Lung , Inflammation
4.
Front Immunol ; 13: 917232, 2022.
Article in English | MEDLINE | ID: mdl-35979364

ABSTRACT

Despite its high prevalence, the cellular and molecular mechanisms of chronic obstructive pulmonary disease (COPD) are far from being understood. Here, we determine disease-related changes in cellular and molecular compositions within the alveolar space and peripheral blood of a cohort of COPD patients and controls. Myeloid cells were the largest cellular compartment in the alveolar space with invading monocytes and proliferating macrophages elevated in COPD. Modeling cell-to-cell communication, signaling pathway usage, and transcription factor binding predicts TGF-ß1 to be a major upstream regulator of transcriptional changes in alveolar macrophages of COPD patients. Functionally, macrophages in COPD showed reduced antigen presentation capacity, accumulation of cholesteryl ester, reduced cellular chemotaxis, and mitochondrial dysfunction, reminiscent of impaired immune activation.


Subject(s)
Macrophages, Alveolar , Pulmonary Disease, Chronic Obstructive , Chemotaxis/physiology , Humans , Macrophages/metabolism , Monocytes/metabolism
5.
Immunity ; 50(5): 1232-1248.e14, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31027998

ABSTRACT

Regulatory T cells (Treg cells) are important for preventing autoimmunity and maintaining tissue homeostasis, but whether Treg cells can adopt tissue- or immune-context-specific suppressive mechanisms is unclear. Here, we found that the enzyme hydroxyprostaglandin dehydrogenase (HPGD), which catabolizes prostaglandin E2 (PGE2) into the metabolite 15-keto PGE2, was highly expressed in Treg cells, particularly those in visceral adipose tissue (VAT). Nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ)-induced HPGD expression in VAT Treg cells, and consequential Treg-cell-mediated generation of 15-keto PGE2 suppressed conventional T cell activation and proliferation. Conditional deletion of Hpgd in mouse Treg cells resulted in the accumulation of functionally impaired Treg cells specifically in VAT, causing local inflammation and systemic insulin resistance. Consistent with this mechanism, humans with type 2 diabetes showed decreased HPGD expression in Treg cells. These data indicate that HPGD-mediated suppression is a tissue- and context-dependent suppressive mechanism used by Treg cells to maintain adipose tissue homeostasis.


Subject(s)
Dinoprostone/analogs & derivatives , Dinoprostone/metabolism , Hydroxyprostaglandin Dehydrogenases/metabolism , Intra-Abdominal Fat/immunology , T-Lymphocytes, Regulatory/enzymology , T-Lymphocytes, Regulatory/immunology , 3T3 Cells , Animals , Cell Line , Diabetes Mellitus, Type 2/metabolism , HEK293 Cells , Homeostasis/immunology , Humans , Hydroxyprostaglandin Dehydrogenases/genetics , Insulin Resistance/genetics , Intra-Abdominal Fat/cytology , Jurkat Cells , Lymphocyte Activation/immunology , Male , Mice , Mice, Knockout , STAT5 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL