Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Sci Rep ; 14(1): 14470, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914766

ABSTRACT

This study employed a commercial software velocity to perform deformable registration and dose calculation on deformed CT images, aiming to assess the accuracy of dose delivery during the radiotherapy for lung cancers. A total of 20 patients with lung cancer were enrolled in this study. Adaptive CT (ACT) was generated by deformed the planning CT (pCT) to the CBCT of initial radiotherapy fraction, followed by contour propagation and dose recalculation. There was not significant difference between volumes of GTV and CTV calculated from the ACT and pCT. However, significant differences in dice similarity coefficient (DSC) and coverage ratio (CR) between GTV and CTV were observed, with lower values for GTV volumes below 15 cc. The mean differences in dose corresponding to 95% of the GTV, GTV-P, CTV, and CTV-P between ACT and pCT were - 0.32%, 4.52%, 2.17%, and 4.71%, respectively. For the dose corresponding to 99%, the discrepancies were - 0.18%, 8.35%, 1.92%, and 24.96%, respectively. These differences in dose primarily appeared at the edges of the target areas. Notably, a significant enhancement of dose corresponding to 1 cc for spinal cord was observed in ACT, compared with pCT. There was no statistical difference in the mean dose of lungs and heart. In general, for lung cancer patients, anatomical motion may result in both CTV and GTV moving outside the original irradiation region. The dose difference within the original target area was small, but the difference in the planning target area was considerable.


Subject(s)
Lung Neoplasms , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Software , Tomography, X-Ray Computed , Humans , Lung Neoplasms/radiotherapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Radiotherapy Planning, Computer-Assisted/methods , Male , Female , Aged , Middle Aged , Tomography, X-Ray Computed/methods , Cone-Beam Computed Tomography/methods
2.
Inorg Chem ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940642

ABSTRACT

Chemical equilibrium stands as a fundamental principle governing the dynamics of chemical systems. However, it may become intricate when it refers to nanomaterials because of their unique properties. Here, we invesitigated concave gold nanocubes (CGNs) subjected to an akaline Au3+/H2O2 solution, which exhibit both etching and growth in a monotonic solution. When CGNs were subjected to an increasingly alkaline Au3+/H2O2 solution, their dimensions increased from 107 to 199 nm and then decreased to 125 nm. Transmission electron microscopy (TEM) demonstrated that their morphology undergoes intricate alternations from concave to mutibranch and finally to concave again. Real-time ultraviolet-visible spectroscopy and time-dependent TEM also demonstrated reduction first and then oxidation in one solution. Among the nanomaterials, the obtained carpenterworm-like gold nanoparticles revealed the best catalytic performance in p-nitrophenol reduction by NaBH4, with a chemical rate that continues to increase until the reaction reaches completion. Growth leading to atomic dislocation, distortion, and exposure on nanoparticles and the redox of H2O2 plausibly account for the further etching due to the Ostwald ripening effect. Our study may spur more interest in the tuning of the properties, engineering, investigation, and design of new kinds of nanomaterials.

3.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38719546

ABSTRACT

Aeromonas dhakensis is reported as an emerging pathogenic species within the genus Aeromonas and is widely distributed in tropical coastal areas. This study provided a detailed description and characterization of a strain of A. dhakensis (202108B1) isolated from diseased Ancherythroculter nigrocauda in an inland region of China. Biochemical tests identified the isolate at the genus level, and the further molecular analysis of concatenated housekeeping gene sequences revealed that the strain belonged to the species A. dhakensis. The isolated A. dhakensis strain was resistant to five antibiotics, namely, penicillin, ampicillin, clindamycin, cephalexin, and imipenem, while it was susceptible to or showed intermediate resistance to most of the other 15 tested antibiotics. The isolated strain of A. dhakensis caused acute hemorrhagic septicemia and tissue damage in artificially infected A. nigrocauda, with a median lethal dose of 7.76 × 104 CFU/fish. The genome size of strain 202108B1 was 5 043 286 bp, including 1 chromosome and 4 plasmids. This is the first detailed report of the occurrence of infection caused by an A. dhakensis strain causing infection in an aquaculture system in inland China, providing important epidemiological data on this potential pathogenic species.


Subject(s)
Aeromonas , Anti-Bacterial Agents , Fish Diseases , Gram-Negative Bacterial Infections , China , Aeromonas/genetics , Aeromonas/isolation & purification , Aeromonas/classification , Aeromonas/drug effects , Aeromonas/pathogenicity , Animals , Anti-Bacterial Agents/pharmacology , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/veterinary , Fishes/microbiology , Phylogeny , Microbial Sensitivity Tests , Aquaculture , Genome, Bacterial , RNA, Ribosomal, 16S/genetics , Plasmids/genetics
4.
Cell Death Dis ; 15(5): 319, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710705

ABSTRACT

Argininosuccinate synthase (ASS1), a critical enzyme in the urea cycle, acts as a tumor suppressor in many cancers. To date, the anticancer mechanism of ASS1 has not been fully elucidated. Here, we found that phosphoglycerate dehydrogenase (PHGDH), a key rate-limiting enzyme in serine synthesis, is a pivotal protein that interacts with ASS1. Our results showed that ASS1 directly binds to PHGDH and promotes its ubiquitination-mediated degradation to inhibit serine synthesis, consequently suppressing tumorigenesis. Importantly, the tumor suppressive effects of ASS1 were strongly abrogated by PHGDH knockout. In addition, ASS1 knockout and knockdown partially rescued cell proliferation when serine and glycine were depleted, while the inhibitory effect of ASS1 overexpression on cell proliferation was restored by the addition of serine and glycine. These findings unveil a novel role of ASS1 and suggest that the ASS1/PHGDH serine synthesis pathway is a promising target for cancer therapy.


Subject(s)
Argininosuccinate Synthase , Cell Proliferation , Phosphoglycerate Dehydrogenase , Serine , Triple Negative Breast Neoplasms , Phosphoglycerate Dehydrogenase/metabolism , Phosphoglycerate Dehydrogenase/genetics , Serine/metabolism , Serine/biosynthesis , Humans , Female , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Animals , Argininosuccinate Synthase/metabolism , Argininosuccinate Synthase/genetics , Cell Line, Tumor , Mice, Nude , Ubiquitination , Mice , Glycine/metabolism
5.
Anal Chem ; 96(21): 8432-8440, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38709576

ABSTRACT

Cytoarchitectural staining is of great importance in disease diagnosis and cell biology research. This study developed user-friendly multifunctional red-emissive carbon dots (R-CDs) for rapid cell nucleus staining via targeting nuclear proteins. R-CDs, simply prepared by electrochemical treatment of 1,2,4-benzenetriamine, exhibit strong emission at 635 nm when excited at 507 nm. The R-CDs can rapidly stain the nucleus of human SH-SY5Y, HepG2, and HUH-7 cells with a high signal-to-noise ratio owing to fluorescence enhancement after entering the nucleus. Compared to conventional cytosolic dyes such as Hoechst and DAPI, R-CDs are cheaper, more highly dispersed in water, and more stable (requiring no stringent storage conditions). The R-CDs show stable optical properties with insignificant photobleaching over 7 days and salt resistance up to 2 M of NaCl. More importantly, R-CDs, possessing a positive charge, allow rapid staining of live cells (3 min) and dead cells (10 s) in saline. According to kinetic variation, R-CDs can distinguish live cells from dead cells. Staining exhibits high efficiency in onion epidermal cells, Aspergillus niger, Caenorhabditis elegans, and human spermatozoa. The mechanism for efficient staining is based on their fast accumulation in the nucleus due to their small size and positive charge and strong interaction with nuclear proteins at amino acid residues of histidine and arginine, resulting in fluorescence enhancement by dozens of times. The developed R-CDs do not bind to DNA and would not cause genetic damage and will find various safe applications in biological and medical fields.


Subject(s)
Carbon , Cell Nucleus , Quantum Dots , Humans , Carbon/chemistry , Cell Nucleus/chemistry , Cell Nucleus/metabolism , Quantum Dots/chemistry , Animals , Nuclear Proteins/metabolism , Nuclear Proteins/analysis , Fluorescent Dyes/chemistry , Staining and Labeling , Caenorhabditis elegans/chemistry , Onions/chemistry , Onions/cytology
6.
Molecules ; 29(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675633

ABSTRACT

Surface charges of catalysts have important influences on the thermodynamics and kinetics of electrochemical reactions. Herein, we develop a modified version of the grand-canonical potential kinetics (GCP-K) method based on density functional theory (DFT) calculations to explore the effect of surface charges on reaction thermodynamics and kinetics. Using the hydrogen evolution reaction (HER) on the Pt(111) surface as an example, we show how to track the change of surface charge in a reaction and how to analyze its influence on the kinetics. Grand-canonical calculations demonstrate that the optimum hydrogen adsorption energy on Pt under the standard hydrogen electrode condition (SHE) is around -0.2 eV, rather than 0 eV established under the canonical ensemble, due to the high density of surface negative charges. By separating the surface charges that can freely exchange with the external electron reservoir, we obtain a Tafel barrier that is in good agreement with the experimental result. During the Tafel reaction, the net electron inflow into the catalyst leads to a stabilization of canonical energy and a destabilization of the charge-dependent grand-canonical component. This study provides a practical method for obtaining accurate grand-canonical reaction energetics and analyzing the surface charge induced changes.

7.
Acta Pharm Sin B ; 14(4): 1787-1800, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572091

ABSTRACT

Radiotherapy (RT) is one of the most feasible and routinely used therapeutic modalities for treating malignant tumors. In particular, immune responses triggered by RT, known as radio-immunotherapy, can partially inhibit the growth of distantly spreading tumors and recurrent tumors. However, the safety and efficacy of radio-immunotherapy is impeded by the radio-resistance and poor immunogenicity of tumor. Herein, we report oxaliplatin (IV)-iron bimetallic nanoparticles (OXA/Fe NPs) as cascade sensitizing amplifiers for low-dose and robust radio-immunotherapy. The OXA/Fe NPs exhibit tumor-specific accumulation and activation of OXA (II) and Fe2+ in response to the reductive and acidic microenvironment within tumor cells. The cascade reactions of the released metallic drugs can sensitize RT by inducing DNA damage, increasing ROS and O2 levels, and amplifying the immunogenic cell death (ICD) effect after RT to facilitate potent immune activation. As a result, OXA/Fe NPs-based low-dose RT triggered a robust immune response and inhibited the distant and metastatic tumors effectively by a strong abscopal effect. Moreover, a long-term immunological memory effect to protect mice from tumor rechallenging is observed. Overall, the bimetallic NPs-based cascade sensitizing amplifier system offers an efficient radio-immunotherapy regimen that addresses the key challenges.

8.
Opt Express ; 32(5): 7318-7331, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439415

ABSTRACT

Highly tunable electromagnetically induced transparency (EIT) with high-quality-factor (Q-factor) excited by combining with the quasi-bound states in the continuum (quasi-BIC) resonances is crucial for many applications. This paper describes all-dielectric metasurface composed of silicon cuboid etched with two rectangular holes into a unit cell and periodically arranged on a SiO2 substrate. By breaking the C2 rotational symmetry of the unit cell, a high-Q factor EIT and double quasi-BIC resonant modes are excited at 1224.3, 1251.9 and 1299.6 nm with quality factors of 7604, 10064 and 15503, respectively. We show that the EIT resonance is caused by destructive interference between magnetic dipole resonances and quasi-BIC dominated by electric quadrupole. Toroidal dipole (TD) and electric quadrupole (EQ) dominate the other two quasi-BICs. The EIT window can be successfully modulated with transmission intensity from 90% to 5% and modulation depths ranging from -17 to 24 dB at 1200-1250 nm by integrating the metasurface with an epsilon-near-zero (ENZ) material indium tin oxide (ITO) film. Our findings pave the way for the development of applications such as optical switches and modulators with many potential applications in nonlinear optics, filters, and multichannel biosensors.

9.
Int J Biol Macromol ; 264(Pt 1): 130563, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431018

ABSTRACT

Both sensing and removal of Hg(II) are important to environment and human health in view of the high toxicity and wide applications of mercury in industry. This study aims to develop a cellulose-based fluorescent aerogel for simultaneous Hg(II) sensing and removal via conveniently cross-linking two nanomaterials cellulose nanocrystals and bovine serum albumin-functionalized gold nanoclusters (BSA-AuNCs) with epichlorohydrin. The aerogel exhibited strong homogeneous red fluorescence at the non-edged regions under UV light due to highly dispersed BSA-AuNCs in it, and its fluorescence could be quenched by Hg(II). Through taking pictures with a smartphone, Hg(II) in the range of 0-1000 µg/L could be quantified with a detection limit of 12.7 µg/L. The sorption isotherm of Hg(II) by the aerogel followed Freundlich model with an equation of Qe = 0.329*Ce1/0.971 and a coefficient of 0.999. The maximum sorption capacity can achieve 483.21 mg/g for Hg(II), much higher than many reported sorbents. The results further confirmed Hg(II) strong sorption and sensitive detection are due to its complexation and redox reaction with the chemical groups in aerogels and its strong fluorescence quenching effect. Due to extensive sources and low cost, cellulose is potential to be developed into aerogels with multiple functions for sophisticated applications.


Subject(s)
Mercury , Metal Nanoparticles , Humans , Cellulose , Metal Nanoparticles/chemistry , Mercury/chemistry , Fluorescent Dyes/chemistry , Gold/chemistry , Spectrometry, Fluorescence/methods
10.
Heliyon ; 10(6): e27424, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38515658

ABSTRACT

The present article conducts an investigation into the phenomenon of exponential stability within singular perturbed delayed systems, incorporating time-varying parameters. Singularly perturbed systems serve as essential tools in modeling intricate systems characterized by multiple time scales, wherein one subsystem exhibits significantly faster evolution than the others. The presence of small delays introduces complexities, influencing both state derivatives and delays, further accentuating the intricacies of the system. Drawing upon the principles of singular perturbation theory, the article introduces a novel approach to analyzing the stability of these complex systems, eschewing the conventional assumption of exponential stability in the fast subsystem. Within the scope of this study, we propose a rigorous stability analysis, utilizing Linear Matrix Inequality (LMI) methods, while considering time-varying parameters that exert substantial influence on the system's dynamics. The proposed methodology enables the exploration of system stability beyond conventional assumptions, imparting valuable insights into the behavior of singular perturbed delayed systems amidst varying conditions. Through extensive numerical simulations, the effectiveness and robustness of the approach are validated, illuminating the stability properties of these intricate systems. Comparative studies with existing techniques, which assume exponential stability in the fast subsystem, demonstrate the distinct advantages and uniqueness of the presented approach. The findings underscore the significance of accounting for time-varying parameters in achieving a comprehensive understanding of the exponential stability inherent in singular perturbed delayed systems. This research makes substantial contributions to the field of system stability analysis, particularly in the context of singular perturbed delayed systems featuring time-varying parameters. The originality of our approach lies in introducing a comprehensive analysis framework that overcomes the limitations of existing methodologies. By integrating a novel stability analysis method based on Linear Matrix Inequalities (LMIs), we offer a fresh perspective on achieving exponential stability in such complex systems. Significantly, our work addresses a critical gap in current literature by challenging the assumption of exponential stability in the fast subsystem, a key feature of singularly perturbed systems. Through a meticulous examination of time-varying parameters, we unveil their profound impact on system dynamics, thus enriching the understanding of stability behaviors. The potential real-world applications of our findings span diverse fields, ranging from engineering to mathematical modeling. Performance metrics are a key focal point of our research. Numerical simulations employing our proposed LMIs serve as a robust benchmark, demonstrating the superior stability achieved in comparison to existing methods. This performance-driven evaluation ensures the practical applicability and reliability of our analysis approach across various scenarios.

11.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396695

ABSTRACT

In recent years, gold nanomaterials have become a hot topic in photothermal tumor therapy due to their unique surface plasmon resonance characteristics. The effectiveness of photothermal therapy is highly dependent on the shape and size of gold nanoparticles. In this work, we investigate the photothermal therapeutic effects of four different sizes of gold nanorods (GNRs). The results show that the uptake of short GNRs with aspect ratios 3.3-3.5 by cells is higher than that of GNRs with aspect ratios 4-5.5. Using a laser with single pulse energy as low as 28 pJ laser for 20 s can induce the death of liver cancer cells co-cultured with short GNRs. Long GNRs required twice the energy to achieve the same therapeutic effect. The dual-temperature model is used to simulate the photothermal response of intracellular clusters irradiated by a laser. It is found that small GNRs are easier to compact because of their morphological characteristics, and the electromagnetic coupling between GNRs is better, which increases the internal field enhancement, resulting in higher local temperature. Compared with a single GNR, GNR clusters are less dependent on polarization and wavelength, which is more conducive to the flexible selection of excitation laser sources.


Subject(s)
Hyperthermia, Induced , Metal Nanoparticles , Nanotubes , Photothermal Therapy , Gold/pharmacology , Hyperthermia, Induced/methods , Metal Nanoparticles/therapeutic use
12.
Opt Lett ; 49(2): 290-293, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38194550

ABSTRACT

The group velocity (GV) modulation of space-time wave packets (STWPs) along the transverse and longitudinal directions in free space is constrained by various factors. To surmount this limitation, a technique called "flying focus" has been developed, which enables the generation of laser pulses with dynamic focal points that can propagate at arbitrary velocities independent of GV. In this Letter, we propose a (3+1)-dimensional Pearcey-Gauss wave packet based on the "flying focus" technique, which exhibits superluminal propagation, transverse focus oscillation, and longitudinal periodic autofocusing. By selecting appropriate parameters, we can flexibly manipulate the position, the size, and the number of focal points- or make the wave packet follow a desired trajectory. This work may pave the way for the advancement of space-time structured light fields.

13.
New Phytol ; 241(5): 2209-2226, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38084045

ABSTRACT

R-loops, three-stranded nucleic acid structures consisting of a DNA: RNA hybrid and displaced single-stranded DNA, play critical roles in gene expression and genome stability. How R-loop homeostasis is integrated into chloroplast gene expression remains largely unknown. We found an unexpected function of FtsHi1, an inner envelope membrane-bound AAA-ATPase in chloroplast R-loop homeostasis of Arabidopsis thaliana. Previously, this protein was shown to function as a component of the import motor complex for nuclear-encoded chloroplast proteins. However, this study provides evidence that FtsHi1 is an ATP-dependent helicase that efficiently unwinds both DNA-DNA and DNA-RNA duplexes, thereby preventing R-loop accumulation. Over-accumulation of R-loops could impair chloroplast transcription but not necessarily genome integrity. The dual function of FtsHi1 in both protein import and chloroplast gene expression may be important to coordinate the biogenesis of nuclear- and chloroplast-encoded subunits of multi-protein photosynthetic complexes. This study suggests a mechanical link between protein import and R-loop homeostasis in chloroplasts of higher plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Adenosine Triphosphate/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Protein Transport , R-Loop Structures , RNA/metabolism , RNA Helicases/genetics
14.
Autophagy ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37974331

ABSTRACT

Extracellular vesicle DNAs (evDNAs) hold significant diagnostic value for various diseases and facilitate transcellular transfer of genetic material. Our study identifies transcription factor FOXM1 as a mediator for directing chromatin genes or DNA fragments (termed FOXM1-chDNAs) to extracellular vesicles (EVs). FOXM1 binds to MAP1LC3/LC3 in the nucleus, and FOXM1-chDNAs, such as the DUX4 gene and telomere DNA, are designated by FOXM1 binding and translocated to the cytoplasm before being released to EVs through the secretory autophagy during lysosome inhibition (SALI) process involving LC3. Disrupting FOXM1 expression or the SALI process impairs FOXM1-chDNAs incorporation into EVs. FOXM1-chDNAs can be transmitted to recipient cells via EVs and expressed in recipient cells when they carry functional genes. This finding provides an example of how chromatin DNA fragments are specified to EVs by transcription factor FOXM1, revealing its contribution to the formation of evDNAs from nuclear chromatin. It provides a basis for further exploration of the roles of evDNAs in biological processes, such as horizontal gene transfer.

15.
Opt Lett ; 48(22): 6004-6007, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966774

ABSTRACT

It is a highly significant area of research to investigate how to effectively enhance the focusing ability of abruptly auto-focusing beams (AAFBs) while extending the focal length. We introduce a dual-region parabolic trajectory offset modulation to auto-focusing ring Pearcey beams (RPBs), presenting a novel, to the best of our knowlege, approach to extend the focal length while greatly enhancing their auto-focusing capabilities. Unlike directly introducing a linear chirp, which inevitably shortens the focal length to enhance the auto-focusing ability and allows only single focusing in the RPBs, our scheme can achieve a multi-focusing effect. Furthermore, we have experimentally generated such a beam, verifying our theoretical predictions. Our findings offer promising possibilities for generating optical bottles, trapping multiple particles periodically, and enhancing free-space optical communication capabilities.

16.
BMC Med Genomics ; 16(1): 258, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875874

ABSTRACT

BACKGROUND: The role of the basal metabolic rate (BMR) in osteoarthritis (OA) remains unclear, as previous retrospective studies have produced inconsistent results. Therefore, we performed a Mendelian randomization (MR) study to systematically investigate the causal relationship between the BMR and OA. METHODS: Single-nucleotide polymorphism (SNP) data related to BMR and OA were collected in a genome-wide association study. Using OA as the outcome variable and BMR as the exposure factor, SNPs with strong correlation with the BMR as the tool variable were screened. The correlation between the BMR and OA risk was evaluated using the inverse-variance weighted method, and heterogeneity and pleiotropy were evaluated using a sensitivity analysis. RESULTS: There was a potential causal relationship between the BMR and OA risk (odds ratio [OR], 1.014; 95% confidence interval [CI], 1.008-1.020; P = 2.29e - 6). A causal relationship was also revealed between the BMR and knee OA (OR, 1.876; 95% CI, 1.677-2.098; P = 2.98e - 28) and hip OA (OR, 1.475; 95% CI, 1.290-1.686; P = 1.26e - 8). Sensitivity analysis confirmed the robustness of these results. CONCLUSION: Here, we identified a latent causal relationship between the BMR and the risk of OA. These results suggest that the risk of OA in the hip or knee joint may be reduced by controlling the BMR.


Subject(s)
Osteoarthritis, Hip , Osteoarthritis, Knee , Humans , Basal Metabolism , Genome-Wide Association Study , Mendelian Randomization Analysis , Osteoarthritis, Knee/genetics , Polymorphism, Single Nucleotide
17.
Environ Geochem Health ; 45(12): 9669-9690, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37801211

ABSTRACT

The organochlorine pesticides (OCPs) are with features of persistence, high toxicity, bioaccumulation and adverse impact on ecosystems and human beings. Although OCPs pollutions have been observed in the plateau lakes, comprehensive understandings in the distribution characteristics and human health risks of OCPs in these valuable but fragile ecosystems are limited. We here investigated the distribution, bioaccumulation process and health risks of OCPs in the Jianhu lake, a representative plateau lake in China. The endrin ketone, endrin aldehyde and heptachlor were the most dominant species in surface and columnar sediments. Their total contents ranged between 0 ~ 1.92 × 103 ng·g-1. The distribution of OCPs in sediment cores combined with chronology information indicated that the fast accumulation of OCPs happened during the last decades. Combining the distribution features of OCPs in different sources with mixing model results of carbon isotope (δ13C), farming area was identified as the main source (46%), and the OCPs were transported to lake by inflow-rivers (37%). The enrichment of OCPs in sediments caused considerable bioaccumulation of OCPs in local fish (∑OCPs 0-3199.93 ng·g-1, dw) with the bio-sediment accumulation factor (BSAF) ranging from ND to 9.41. Moreover, growing time was another key factor governing the accumulation in specific species (Carassius auratus and Cyprinus carpio). Eventually, the carcinogenic risk index (CRI) and exposure risk index (ERI) of the endrin category and aldrin exceeded the reference value, indicating relatively high health risks through consumption of fish. Overall, this study systematically illustrated the bioaccumulation process and health risks of OCPs in the typical plateau lake, providing theoretical support for the better protection of this kind of lakes.


Subject(s)
Carps , Hydrocarbons, Chlorinated , Pesticides , Water Pollutants, Chemical , Animals , Humans , Lakes , Endrin , Ecosystem , Bioaccumulation , Water Pollutants, Chemical/analysis , Pesticides/analysis , Hydrocarbons, Chlorinated/analysis , China , Environmental Monitoring/methods , Geologic Sediments
18.
Risk Anal ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37853542

ABSTRACT

Recent events, including COVID-19, extreme floods, and explosion accidents, commonly induced localized closures and disruptions of urban road networks (URNs), resulting in significant impacts on human mobility and socio-economic activities. Existing studies on URN resilience to those events mainly took few cases for empirical studies, limiting our understanding on the URN resilience patterns across different cities. By conducting a large-scale nationwide resilience analysis of URNs in 363 cities in mainland China, this study attempts to uncover the resilience patterns of URNs against the worst-case single (SLDs) and multiple localized disruptions (MLDs). Results show that the distance from the worst-case SLD to the city center would be less than 5 km in 62.3% cities, as opposed to more than 15 km in 14.3% cities. Moreover, the average road network resilience of cities in western China could be 7% and 13% smaller than that of the eastern cities under the worst-case SLDs and MLDs, respectively. This inequality in the worst-case resilience is partly attributable to variations in urban socio-economic, infrastructure-related, and topographic factors. These findings could inspire nationwide pre-disaster mitigation strategies to cope with localized disruptions and help transfer insights for mitigation strategies against disruptive events across cities.

19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1352-1357, 2023.
Article in Chinese | MEDLINE | ID: mdl-37846684

ABSTRACT

OBJECTIVE: To investigate the efficacy and safety of CD19/CD3 bisecific monoclonalantibody (Blinatumomab) in the treatment of adult patients with relapsed / refractory Ph-negative acute B-lymphoblastic leukemia (R/R-B-ALL). METHODS: Ten adult R/R B-ALL patients were all treated with Blinatumomab. Each treatment cycle was administered for 28 days and stopped for 14 days. The dose was 9 µg/day for the first 7 days of cycle 1, and 28 µg/day for days 8-28 if there were no adverse reactions. From the second cycle onwards, the daily dose was 28 µg. The remission, survival time (EFS and OS) and adverse reactions were observed after treatment. RESULTS: Nine patients with curative effect could be evaluated. Four patients achieved CR after one course, and one patient achieved CR after two courses, the overall remission rate was 55.6%(5/9). The median EFS was 4 months (1-12 months), and the median OS was 6 months (2-44 months). Nine of the 10 patients had fever of different degrees. Serum levels of cytokines such as IL-6, IL-10, IL-17 and IFN-γ increased. Two patients resumed medication after 1 week of treatment interruption due to neurotoxicity and CRS, respectively. One patient was discontinued due to grade 3 CRS and died of tropical candidiaemia. CONCLUSION: Blinatumomab has a good response rate in the treatment of relapsed/refractory B-ALL patients, but the duration of remission is shorter. Drug-related adverse reactions are mainly CRS and neurotoxicity. Inflammatory factors IL-6, IL-10, IL-17 and IFN-γ can be used as indicators to monitor CRS. The bisspecificity MAbs provide an opportunity for subsequent allogeneic hematopoietic stem cell transplantation in R/R-B-ALL patients.

20.
J Chem Phys ; 159(14)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37811830

ABSTRACT

The surface charges of catalysts have intricate influences on the thermodynamics and kinetics of electrochemical reactions. Herein, we develop a grand-canonical iteration method based on density functional theory calculations to explore the effect of surface charges on reaction kinetics beyond the traditional Butler-Volmer picture. Using the hydrogen evolution reaction on S vacancies of MoS2 as an example, we show how to track the change of surface charge in a reaction and to analyze its influence on the kinetics. Protons adsorb on S vacancies in a tough and charge-insensitive water splitting manner, which explains the observed large Tafel slope. Grand-canonical calculations report an unanticipated surface charge-induced change of the desorption pathway from the Heyrovsky route to a Volmer-Tafel route. During an electrochemical reaction, a net electron inflow into the catalyst may bring two effects, i.e., stabilization of the canonical energy and destabilization of the charge-dependent grand-canonical part. On the contrary, a net outflow of electrons from the catalyst can reverse the two effects. This surface charge effect has substantial impacts on the overpotential and the Tafel slope. We suggest that the surface charge effect is universal for all electrochemical reactions and significant for those involving interfacial proton transfers.

SELECTION OF CITATIONS
SEARCH DETAIL
...