Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856014

ABSTRACT

BACKGROUND: ß-Carotene (BC) is difficult to apply effectively in the food industry due to its low solubility and bioavailability. This work aimed to fabricate Moringa oleifera seed protein (MOSP) stabilized emulsions as delivery vehicles for BC and investigate the effect of aqueous phase conditions including pH and ionic strength on this system. RESULTS: All MOSP samples were positively charged and the particle size of MOSP increased with the increase of pH. At pH 5.0 and 0.2 mol L-1 sodium chloride (NaCl), the MOSP emulsion demonstrated the highest stability coefficient and minimal creaming index, while exhibiting a lower release rate in vitro digestion. The rheological behavior of all MOSP emulsions within the frequency range of 0.1-10 Hz was dominated by viscoelasticity, forming an elastic network structure through dispersed droplets. Additionally, the MOSP emulsion loaded with BC prepared at pH 5.0 and 0.2 mol L-1 NaCl displayed enhanced ultraviolet light stability (52.31 ± 0.03% and 51.86 ± 0.05%) as well as thermal stability (72.39 ± 8.67% and 86.78 ± 10.69%). Furthermore, the BC in the emulsion at pH 7.0 exhibited favorable stability (65.14 ± 0.02%) and optimal bioaccessibility (40.30 ± 0.04%) in vitro digestion. CONCLUSION: The results provided reference data for utilizing MOSP as a novel emulsifier and broadening the application of BC in the food industry. © 2024 Society of Chemical Industry.

2.
Food Chem ; 450: 139241, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38636382

ABSTRACT

The characteristics of the crosslinking between rice protein (RP) and ferulic acid (FA), gallic acid (GA), or tannin acid (TA) by covalent binding of Laccase and non-covalent binding were evaluated. The RP-polyphenol complexes greatly improved the functionality of RP. The covalent effect with higher polyphenol binding equivalence showed higher emulsion activity than the non-covalent effect. The solubility, and antioxidant activity of covalent binding were higher than that of non-covalent binding in the RP-FA group, but there was a contrasting behavior in the RP-GA group. The RP-FA was most soluble in conjugates, while the RP-GA had the highest solubility in mixtures. It was found that the covalent complexes were more stable in the intestinal tract. The content of polyphenols in the RP-TA group was rapidly increased at the later intestinal digestion, which indicated the high polyphenol-protective effect in this group. Meanwhile, the RP-TA group showed high reducing power but low digestibility.


Subject(s)
Digestion , Oryza , Plant Proteins , Polyphenols , Oryza/chemistry , Oryza/metabolism , Polyphenols/chemistry , Polyphenols/metabolism , Polyphenols/pharmacology , Plant Proteins/chemistry , Plant Proteins/metabolism , Solubility , Antioxidants/chemistry , Antioxidants/metabolism , Models, Biological , Humans
3.
Food Chem ; 450: 138984, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38642532

ABSTRACT

This study explored the effect of diverse coagulants (glucono-δ-lactone (GDL), gypsum (GYP), microbial transglutaminase (MTGase), and white vinegar (WVG)) on microstructure, quality, and digestion properties of tofu. The four kinds of tofu were significantly different in their structure, composition, and digestibility. Tofu coagulated with MTGase had the highest springiness and cohesiveness while GDL tofu had the highest enthalpy (6.54 J/g). However, the WVG and GYP groups outperformed others in terms of thermodynamic, and digestion properties. The WVG group exhibited the highest nitrogen release (84.3%), water content, denaturation temperature, and the highest free-SH content but the lowest S-S content. Compared to WVG, the GYP group had the highest ash content, hardness, and chewiness. Results demonstrated that the tofu prepared by WVG and GYP show high digestibility. Meanwhile, the former has better thermal properties and the latter has better texture properties.


Subject(s)
Digestion , Soy Foods , Soy Foods/analysis , Glycine max/chemistry , Glycine max/metabolism , Food Handling , Models, Biological , Calcium Sulfate/chemistry , Humans , Coagulants/chemistry , Coagulants/metabolism
4.
Int J Biol Macromol ; 266(Pt 2): 131092, 2024 May.
Article in English | MEDLINE | ID: mdl-38527678

ABSTRACT

V-type granular starches (VGSs) were prepared via an ethanol-alkaline (EA) method using maize starch with different amylose contents, specifically, high amylose (HAM), normal maize starch (MS), and waxy maize starch (WS). The X-ray diffraction pattern of the native starch was completely transformed into a V-type pattern after the EA treatment, indicating a structural change in the starch granules. The VGSs prepared by HAM had highest relative crystallinity (31.8°), while the VGSs prepared by WS showed amorphous diffraction pattern. Excessive NaOH, however, would disrupt the formation of V-type structures and cause granular shape rupture. The quantity of double-helical structures, particularly those formed by amylopectin at the starch granules' periphery, significantly decreased. Conversely, single-helical structures formed by amylose increased. A notable rise in the relative crystallinity of V crystals. Four VGS samples, characterized by granular integrity, were chosen for the next investigation of physicochemical and digestive properties. VGS prepared from HAM exhibited higher granular integrity, lower cold-water swelling extent (59.0 and 161.0 cP), improved thermal stability (the value of breakdown as lower as 57.67 and 186.67 cP), and higher resistance to digestion (RS content was up to 10.38 % and 9.00 % higher than 5.86 % and 5.66 % of VGS prepared from WS and MS). The results confirmed that amylose content has a substantial impact on the microstructural and physicochemical properties of VGSs.


Subject(s)
Amylose , Starch , Zea mays , Amylose/chemistry , Zea mays/chemistry , Starch/chemistry , Chemical Phenomena , X-Ray Diffraction , Amylopectin/chemistry , Digestion
5.
Food Res Int ; 175: 113762, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38128999

ABSTRACT

The characteristics of rice protein deamidated (DRP) by choline chloride-citric acid and glucose-citric acid natural deep eutectic solvents (C-C NADES, G-C NADES) at different dilutions were investigated. Compared with the effect of citric acid deamidation on the structural and functional properties of the protein, the DRP from the NADESs led to remarkable differences in the degree of hydrolysis (DH), SDS-PAGE, morphology, surface hydrophobicity, average particle size, intrinsic fluorescence, amino acid compositions, and emulsion activity. The results of SDS-PAGE, DH, and SEM showed the NADESs reduced the occurrence of uncontrolled hydrolysis of protein during acid deamidation. DRP from C-C and G-C NADESs was found to significantly improve solubility. DRP prepared by C-C NADES showed a more than 40 % solubility over a wide pH range associated with its higher emulsifying activity (37.62-44.19 m2/g) and emulsifying stability (73.76-86.9 min), as well as a better deamidation effect while lower DH. Thus, these findings showed that acid-based NADESs had great potential as a deamidation solvent to expand the application of protein.


Subject(s)
Deep Eutectic Solvents , Oryza , Solubility , Citric Acid/chemistry , Emulsions
6.
Food Res Int ; 174(Pt 1): 113572, 2023 12.
Article in English | MEDLINE | ID: mdl-37986444

ABSTRACT

Yeast protein concentrate, a by-product of the fermentation industry waste, is a potential alternative protein source with high nutritional quality, environmental sustainability, and functional properties. However, its digestibility and digestion behavior are poorly understood. In this study, we compared the in vitro digestion behavior of yeast protein concentrate and whey protein concentrate using simulated gastrointestinal conditions. We found that yeast protein concentrate had lower digestibility than whey protein concentrate (31.25% vs. 86.23% at 120 min of pepsin digestion and 75.12% vs. 95.2% at 120 min of pancreatin digestion). Yeast protein concentrate differed from whey protein concentrate in microstructure, secondary structure, and amino acid composition, which may affect its digestion behavior. Compared to whey protein concentrate, a higher level of ß-sheets and a lower zeta potential explain the slow-digesting property of yeast protein concentrate. Yeast protein concentrate also underwent depolymerization and Plastein reaction during digestion. These results provided valuable information for developing and applying yeast protein concentrate as an alternative to conventional animal protein.


Subject(s)
Digestion , Saccharomyces cerevisiae , Animals , Whey Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acids/metabolism , Fungal Proteins
7.
Int J Biol Macromol ; 236: 123877, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36870658

ABSTRACT

In the present work, the composite films were obtained by the solution casting method from chitosan and rice protein hydrolysates, reinforced with cellulose nanocrystals (CNC) of different contents (0 %, 3 %, 6 % and 9 %). The influence of different CNC loadings on the mechanical, barrier and thermal properties was discussed. SEM showed the formation of intramolecular interactions between the CNC and film matrices, leading to more compact and homogeneous films. These interactions had a positive influence on the mechanical strength properties, which was reflected in higher breaking force of 4.27 MPa. The elongation dwindled from 132.42 % to 79.37 % with increasing CNC levels. The linkages formed between the CNC and film matrices reduced the water affinity, leading to a reduction in their moisture content, water solubility and water vapor transmission. Thermal stability of the composite films was also improved in the presence of CNC, by increasing maximum degradation temperature from 311.21 to 325.67 °C with increasing CNC contents. The strongest DPPH inhibition of the film was 45.42 %. The composite films exhibited the highest inhibition zone diameter against E. coli (12.05 mm) and S. aureus (12.48 mm), and the hybrid of CNC and ZnO nanoparticles exhibited stronger antibacterial activity than their single existent forms. The present work shows the possibility of obtaining CNC-reinforced films with improved mechanical, thermal and barrier properties.


Subject(s)
Chitosan , Nanocomposites , Nanoparticles , Oryza , Zinc Oxide , Chitosan/chemistry , Zinc Oxide/chemistry , Protein Hydrolysates , Cellulose/chemistry , Staphylococcus aureus , Escherichia coli , Nanoparticles/chemistry , Tensile Strength , Nanocomposites/chemistry
8.
Int J Biol Macromol ; 210: 53-62, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35537582

ABSTRACT

The composite films were prepared by adding rice protein hydrolysate (RH) into chitosan (CH). Effect of four different chitosan molecular weights (MW, 0.8- 1.0, 30, 100, 300 kDa) was evaluated and curcumin was further incorporated into the film to enhance its bioactivities. With increasing MW (<100 kDa), moisture, solubility and water vapor transmission marginally decreased while tensile strength increased. Rice hydrolysate improved the film solubility and extensibility. All films showed extraordinary extensibility ranging from 180.26% to 204.08%. DSC confirmed MW did affect the thermal stability. The lower MW, the higher antioxidant activity of the CH/RH films. The 30 kDa CH/RH film exhibited higher antibacterial activity against both E. coli and S. aureus. Curcumin effectively improved both antibacterial and antioxidant activity of the CH/RH films. Hence, chitosan molecular weight must be chosen carefully according to its application and incorporation of protein hydrolysate into film would be an efficient strategy to modify film performance.


Subject(s)
Chitosan , Curcumin , Oryza , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Chitosan/pharmacology , Curcumin/pharmacology , Escherichia coli , Food Packaging , Molecular Weight , Permeability , Protein Hydrolysates/pharmacology , Staphylococcus aureus , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...