Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Transplantation ; 108(10): 2045-2056, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38467591

ABSTRACT

Organ transplantation remains the most optimal strategy for patients with end-stage organ failure. However, prevailing methods of immunosuppression are marred by adverse side effects, and allograft rejection remains common. It is imperative to identify and comprehensively characterize the cell types involved in allograft rejection, and develop therapies with greater specificity. There is increasing recognition that processes mediating allograft rejection are the result of interactions between innate and adaptive immune cells. Macrophages are heterogeneous innate immune cells with diverse functions that contribute to ischemia-reperfusion injury, acute rejection, and chronic rejection. Macrophages are inflammatory cells capable of innate allorecognition that strengthen their responses to secondary exposures over time via "trained immunity." However, macrophages also adopt immunoregulatory phenotypes and may promote allograft tolerance. In this review, we discuss the roles of macrophages in rejection and tolerance, and detail how macrophage plasticity and polarization influence transplantation outcomes. A comprehensive understanding of macrophages in transplant will guide future personalized approaches to therapies aimed at facilitating tolerance or mitigating the rejection process.


Subject(s)
Graft Rejection , Macrophages , Organ Transplantation , Precision Medicine , Transplantation Tolerance , Humans , Macrophages/immunology , Graft Rejection/immunology , Graft Rejection/prevention & control , Organ Transplantation/adverse effects , Animals , Graft Survival/immunology , Phenotype , Immunity, Innate , Immunosuppressive Agents/therapeutic use
2.
bioRxiv ; 2022 May 02.
Article in English | MEDLINE | ID: mdl-35547847

ABSTRACT

The stem-loop II motif (s2m) is an RNA element present in viruses from divergent viral families, including astroviruses and coronaviruses, but its functional significance is unknown. We created deletions or substitutions of the s2m in astrovirus VA1 (VA1), classic human astrovirus 1 (HAstV1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For VA1, recombinant virus could not be rescued upon partial deletion of the s2m or substitutions of G-C base pairs. Compensatory substitutions that restored the G-C base-pair enabled recovery of VA1. For HAstV1, a partial deletion of the s2m resulted in decreased viral titers compared to wild-type virus, and reduced activity in a replicon system. In contrast, deletion or mutation of the SARS-CoV-2 s2m had no effect on the ability to rescue the virus, growth in vitro , or growth in Syrian hamsters. Our study demonstrates the importance of the s2m is virus-dependent.

3.
mSphere ; 6(5): e0048421, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34468168

ABSTRACT

Astroviruses are common pathogens of the human gastrointestinal tract, but they have been recently identified from cases of fatal meningoencephalitis. Astrovirus VA1 is the most frequently detected astrovirus genotype from cases of human encephalitis, but the prevalence of neutralizing antibodies to VA1 in human sera is unknown. We developed a focus reduction neutralization assay (FRNT) for VA1 and measured the seroprevalence of neutralizing antibodies from two cohorts of adult and pediatric serum samples: (i) an age-stratified cohort from St. Louis, MO, collected from 2007 to 2008 and (ii) a cohort from the Peruvian Amazonian River Basin collected in the late 1990s. In the St. Louis cohort, the lowest seropositivity rate was in children 1 year of age (6.9%), rising to 63.3% by ages 9 to 12, and 76.3% of adults ≥20 years were positive. The Peruvian Amazon cohort showed similar seropositivity rates across all ages, with individuals under age 20 having a rate of 75%, while 78.2% of adults ≥20 years were seropositive. In addition, we also identified the presence neutralizing antibodies to VA1 from commercial lots of intravenous immunoglobulin (IVIG). Our results demonstrate that a majority of humans are exposed to VA1 by adulthood, with the majority of infections occurring between 2 and 9 years of age. In addition, our results indicate that VA1 has been circulating in two geographically and socioeconomically divergent study cohorts over the past 20 years. Nonetheless, a significant proportion of the human population lacks neutralizing immunity and remains at risk for acute infection. IMPORTANCE Astroviruses are human pathogens with emerging disease associations, including the recent recognition of their capacity to cause meningoencephalitis. Astrovirus VA1 is the most commonly identified astrovirus genotype from cases of human encephalitis, but it is unknown what percentage of the human population has neutralizing antibodies to VA1. We found that 76.3 to 78.2% of adult humans ≥20 years of age in two geographically and socioeconomically distinct cohorts are seropositive for VA1, with the majority of infections occurring between 2 and 9 years of age. These results demonstrate that VA1 has been circulating in human populations over the past 2 decades and that most humans develop neutralizing antibodies against this virus by adulthood. However, a subset of humans lack evidence of neutralizing antibodies and are at risk for diseases caused by VA1, including encephalitis.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Astroviridae Infections/epidemiology , Mamastrovirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Logistic Models , Male , Mamastrovirus/genetics , Middle Aged , Missouri/epidemiology , Peru/epidemiology , RNA, Viral/genetics , Seroepidemiologic Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL