Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 6(5): e19071, 2011.
Article in English | MEDLINE | ID: mdl-21637753

ABSTRACT

Neuroimaging classification procedures between normal and pathological subjects are sparse and highly dependent of an expert's clinical criterion. Here, we aimed to investigate whether possible brain structural network differences in the shiverer mouse mutant, a relevant animal model of myelin related diseases, can reflect intrinsic individual brain properties that allow the automatic discrimination between the shiverer and normal subjects. Common structural networks properties between shiverer (C3Fe.SWV Mbp(shi)/Mbp(shi), n = 6) and background control (C3HeB.FeJ, n = 6) mice are estimated and compared by means of three diffusion weighted MRI (DW-MRI) fiber tractography algorithms and a graph framework. Firstly, we found that brain networks of control group are significantly more clustered, modularized, efficient and optimized than those of the shiverer group, which presented significantly increased characteristic path length. These results are in line with previous structural/functional complex brain networks analysis that have revealed topologic differences and brain network randomization associated to specific states of human brain pathology. In addition, by means of network measures spatial representations and discrimination analysis, we show that it is possible to classify with high accuracy to which group each subject belongs, providing also a probability value of being a normal or shiverer subject as an individual anatomical classifier. The obtained correct predictions (e.g., around 91.6-100%) and clear spatial subdivisions between control and shiverer mice, suggest that there might exist specific network subspaces corresponding to specific brain disorders, supporting also the point of view that complex brain network analyses constitutes promising tools in the future creation of interpretable imaging biomarkers.


Subject(s)
Automation , Brain/pathology , Brain/physiopathology , Nerve Net/physiopathology , Shivering/physiology , Animals , Cluster Analysis , Diffusion Magnetic Resonance Imaging , Mice , Mice, Neurologic Mutants
2.
Cereb Cortex ; 21(1): 56-67, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20382642

ABSTRACT

Evidence for interregional structural asymmetries has been previously reported for brain anatomic regions supporting well-described functional lateralization. Here, we aimed to investigate whether the two brain hemispheres demonstrate dissimilar general structural attributes implying different principles on information flow management. Common left hemisphere/right hemisphere structural network properties are estimated and compared for right-handed healthy human subjects and a nonhuman primate, by means of 3 different diffusion-weighted magnetic resonance imaging fiber tractography algorithms and a graph theory framework. In both the human and the nonhuman primate, the data support the conclusion that, in terms of the graph framework, the right hemisphere is significantly more efficient and interconnected than the left hemisphere, whereas the left hemisphere presents more central or indispensable regions for the whole-brain structural network than the right hemisphere. From our point of view, in terms of functional principles, this pattern could be related with the fact that the left hemisphere has a leading role for highly demanding specific process, such as language and motor actions, which may require dedicated specialized networks, whereas the right hemisphere has a leading role for more general process, such as integration tasks, which may require a more general level of interconnection.


Subject(s)
Cerebrum/physiology , Dominance, Cerebral/physiology , Nerve Net/physiology , Neural Pathways/physiology , Adult , Algorithms , Animals , Brain Mapping/methods , Cerebrum/anatomy & histology , Diffusion Tensor Imaging/methods , Functional Laterality/physiology , Humans , Macaca mulatta , Magnetic Resonance Imaging/methods , Nerve Net/anatomy & histology , Neural Pathways/anatomy & histology , Neuropsychological Tests/standards , Species Specificity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL