Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Lipid Res ; 46(9): 1953-61, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15961786

ABSTRACT

The acylethanolamide anandamide (AEA) occurs in a variety of mammalian tissues and, as a result of its action on cannabinoid receptors, exhibits several cannabimimetic activities. Moreover, some of its effects are mediated through interaction with an ion channel-type vanilloid receptor. However, the chemical features of AEA suggest that some of its biological effects could be related to physical interactions with the lipidic part of the membrane. The present work studies the effect of AEA-induced structural modifications of the dipalmitoylphosphatidylcholine (DPPC) bilayer on phospholipase A2 (PLA2) activity, which is strictly dependent on lipid bilayer features. This study, performed by 2-dimethylamino-(6-lauroyl)-naphthalene fluorescence, demonstrates that the effect of AEA on PLA2 activity is concentration-dependent. In fact, at low AEA/DPPC molar ratios (from R = 0.001 to R = 0.04), there is an increase of the enzymatic activity, which is completely inhibited for R = 0.1. X-ray diffraction data indicate that the AEA affects DPPC membrane structural properties in a concentration-dependent manner. Because the biphasic effect of increasing AEA concentrations on PLA2 activity is related to the induced modifications of membrane bilayer structural properties, we suggest that AEA-phospholipid interactions may be important to produce, at least in part, some of the similarly biphasic responses of some physiological activities to increasing concentrations of AEA.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Arachidonic Acids/chemistry , Arachidonic Acids/pharmacology , Lipid Bilayers/chemistry , Phospholipases A/metabolism , Cannabinoids , Dose-Response Relationship, Drug , Endocannabinoids , Fluorescent Dyes , Phospholipases A2 , Polyunsaturated Alkamides , Spectrometry, Fluorescence , Structure-Activity Relationship , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL