Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Curr Med Chem ; 26(35): 6349-6398, 2019.
Article in English | MEDLINE | ID: mdl-31203794

ABSTRACT

Carbohydrates are one of the most powerful and versatile classes of biomolecules that nature uses to regulate organisms' biochemistry, modulating plenty of signaling events within cells, triggering a plethora of physiological and pathological cellular behaviors. In this framework, glycan carrier systems or carbohydrate-decorated materials constitute interesting and relevant tools for medicinal chemistry applications. In the last few decades, efforts have been focused, among others, on the development of multivalent glycoconjugates, biosensors, glycoarrays, carbohydrate-decorated biomaterials for regenerative medicine, and glyconanoparticles. This review aims to provide the reader with a general overview of the different carbohydrate carrier systems that have been developed as tools in different medicinal chemistry approaches relying on carbohydrate-protein interactions. Given the extent of this topic, the present review will focus on selected examples that highlight the advancements and potentialities offered by this specific area of research, rather than being an exhaustive literature survey of any specific glyco-functionalized system.


Subject(s)
Chemistry, Pharmaceutical/methods , Polysaccharides/therapeutic use , Animals , Biosensing Techniques/methods , Dendrimers/chemical synthesis , Dendrimers/metabolism , Dendrimers/therapeutic use , Drug Carriers/chemical synthesis , Drug Carriers/metabolism , Drug Carriers/therapeutic use , Humans , Nanoparticles/chemistry , Nanoparticles/metabolism , Nanoparticles/therapeutic use , Polysaccharides/chemical synthesis , Polysaccharides/metabolism , Protein Binding , Proteins/metabolism
2.
Int J Mol Sci ; 20(7)2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30970594

ABSTRACT

The cell microenvironment plays a pivotal role in mediating cell adhesion, survival, and proliferation in physiological and pathological states. The relevance of extracellular matrix (ECM) proteins in cell fate control is an important issue to take into consideration for both tissue engineering and cell biology studies. The glycosylation of ECM proteins remains, however, largely unexplored. In order to investigate the physio-pathological effects of differential ECM glycosylation, the design of affordable chemoselective methods for ECM components glycosylation is desirable. We will describe a new chemoselective glycosylation approach exploitable in aqueous media and on non-protected substrates, allowing rapid access to glyco-functionalized biomaterials.


Subject(s)
Biocompatible Materials/metabolism , Cell Culture Techniques/methods , Extracellular Matrix Proteins/metabolism , Biocompatible Materials/chemistry , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Proliferation , Cell Survival/drug effects , Collagen/chemistry , Collagen/pharmacology , Glycosylation , Humans
3.
Cell Death Dis ; 9(3): 377, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29515119

ABSTRACT

Cancer aberrant N- and O-linked protein glycosylation, frequently resulting from an augmented flux through the Hexosamine Biosynthetic Pathway (HBP), play different roles in tumor progression. However, the low specificity and toxicity of the existing HBP inhibitors prevented their use for cancer treatment. Here we report the preclinical evaluation of FR054, a novel inhibitor of the HBP enzyme PGM3, with a remarkable anti-breast cancer effect. In fact, FR054 induces in different breast cancer cells a dramatic decrease in cell proliferation and survival. In particular, in a model of Triple Negative Breast Cancer (TNBC) cells, MDA-MB-231, we show that these effects are correlated to FR054-dependent reduction of both N- and O-glycosylation level that cause also a strong reduction of cancer cell adhesion and migration. Moreover we show that impaired survival of cancer cells upon FR054 treatment is associated with the activation of the Unfolded Protein Response (UPR) and accumulation of intracellular ROS. Finally, we show that FR054 suppresses cancer growth in MDA-MB-231 xenograft mice, supporting the advantage of targeting HBP for therapeutic purpose and encouraging further investigation about the use of this small molecule as a promising compound for breast cancer therapy.


Subject(s)
Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Hexosamines/biosynthesis , Phosphoglucomutase/metabolism , Triple Negative Breast Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Mice , Phosphoglucomutase/antagonists & inhibitors , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...