Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Chem ; 55(3): 1021-46, 2012 Feb 09.
Article in English | MEDLINE | ID: mdl-22224594

ABSTRACT

Tissue transglutaminase 2 (TG2) is a multifunctional protein primarily known for its calcium-dependent enzymatic protein cross-linking activity via isopeptide bond formation between glutamine and lysine residues. TG2 overexpression and activity have been found to be associated with Huntington's disease (HD); specifically, TG2 is up-regulated in the brains of HD patients and in animal models of the disease. Interestingly, genetic deletion of TG2 in two different HD mouse models, R6/1 and R6/2, results in improved phenotypes including a reduction in neuronal death and prolonged survival. Starting with phenylacrylamide screening hit 7d, we describe the SAR of this series leading to potent and selective TG2 inhibitors. The suitability of the compounds as in vitro tools to elucidate the biology of TG2 was demonstrated through mode of inhibition studies, characterization of druglike properties, and inhibition profiles in a cell lysate assay.


Subject(s)
Acrylamides/chemical synthesis , GTP-Binding Proteins/antagonists & inhibitors , Huntington Disease/drug therapy , Sulfonamides/chemical synthesis , Transglutaminases/antagonists & inhibitors , Acrylamides/chemistry , Acrylamides/pharmacology , Animals , Caco-2 Cells , Cell Membrane Permeability , HEK293 Cells , Humans , In Vitro Techniques , Male , Mice , Microsomes, Liver/metabolism , Models, Molecular , Piperazines/chemical synthesis , Piperazines/chemistry , Piperazines/pharmacology , Protein Glutamine gamma Glutamyltransferase 2 , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Rats , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology
2.
Bioorg Med Chem ; 19(19): 5833-51, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21903398

ABSTRACT

Several caspases have been implicated in the pathogenesis of Huntington's disease (HD); however, existing caspase inhibitors lack the selectivity required to investigate the specific involvement of individual caspases in the neuronal cell death associated with HD. In order to explore the potential role played by caspase-2, the potent but non-selective canonical Ac-VDVAD-CHO caspase-2 inhibitor 1 was rationally modified at the P(2) residue in an attempt to decrease its activity against caspase-3. With the aid of structural information on the caspase-2, and -3 active sites and molecular modeling, a 3-(S)-substituted-l-proline along with four additional scaffold variants were selected as P(2) elements for their predicted ability to clash sterically with a residue of the caspase-3 S(2) pocket. These elements were then incorporated by solid-phase synthesis into pentapeptide aldehydes 33a-v. Proline-based compound 33h bearing a bulky 3-(S)-substituent displayed advantageous characteristics in biochemical and cellular assays with 20- to 60-fold increased selectivity for caspase-2 and ∼200-fold decreased caspase-3 potency compared to the reference inhibitor 1. Further optimization of this prototype compound may lead to the discovery of valuable pharmacological tools for the study of caspase-2 mediated cell death, particularly as it relates to HD.


Subject(s)
Caspase Inhibitors , Cysteine Proteinase Inhibitors/chemical synthesis , Drug Design , Binding Sites , Caspase 2/metabolism , Caspase 3/metabolism , Catalytic Domain , Cell Line , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Humans , Isoquinolines/chemistry , Molecular Dynamics Simulation , Piperidines/chemistry , Proline/chemistry , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL