Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Carbohydr Polym ; 255: 117477, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33436240

ABSTRACT

The cell surface and extracellular matrix polysaccharide, heparan sulfate (HS) conveys chemical information to control crucial biological processes. HS chains are synthesized in a non-template driven process mainly in the Golgi apparatus, involving a large number of enzymes capable of subtly modifying its substitution pattern, hence, its interactions and biological effects. Changes in the localization of HS-modifying enzymes throughout the Golgi were found to correlate with changes in the structure of HS, rather than protein expression levels. Following BFA treatment, the HS-modifying enzymes localized preferentially in COPII vesicles and at the trans-Golgi. Shortly after heparin treatment, the HS-modifying enzyme moved from cis to trans-Golgi, which coincided with increased HS sulfation. Finally, it was shown that COPI subunits and Sec24 gene expression changed. Collectively, these findings demonstrate that knowledge of the ER-Golgi dynamics of HS-modifying enzymes via vesicular trafficking is a critical prerequisite for the complete delineation of HS biosynthesis.


Subject(s)
COP-Coated Vesicles/enzymology , Endoplasmic Reticulum/enzymology , Golgi Apparatus/enzymology , Heparitin Sulfate/biosynthesis , Biological Transport/drug effects , Brefeldin A/pharmacology , COP-Coated Vesicles/genetics , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/enzymology , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/drug effects , Gene Expression Regulation , Golgi Apparatus/chemistry , Golgi Apparatus/drug effects , Heparin/pharmacology , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/enzymology , Humans , Plasmids/chemistry , Plasmids/metabolism , Primary Cell Culture , Transfection , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL