Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Animals (Basel) ; 14(14)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39061526

ABSTRACT

Mycoplasma capricolum subsp. capricolum (Mcc), a member of the Mycoplasma mycoides cluster, has a negative impact on the goat-breeding industry. However, little is known about the pathogenic mechanism of Mcc. This study infected mice using a previously isolated strain, Mcc HN-B. Hematoxylin and eosin staining, RNA sequencing, bioinformatic analyses, RT-qPCR, and immunohistochemistry were performed on mouse lung tissues. The results showed that 235 differentially expressed genes (DEGs) were identified. GO and KEGG enrichment analyses suggested that the DEGs were mainly associated with immune response, defensive response to bacteria, NF-kappa B signaling pathway, natural killer cell-mediated cytotoxicity, and T cell receptor signaling pathway. RT-qPCR verified the expression of Ccl5, Cd4, Cd28, Il2rb, Lck, Lat, Ptgs2, S100a8, S100a9, and Il-33. The up-regulation of S100A8 and S100A9 at the protein level was confirmed by immunohistochemistry. Moreover, RT-qPCR assays on Mcc HN-B-infected RAW264.7 cells also showed that the expression of S100a8 and S100a9 was elevated. S100A8 and S100A9 not only have diagnostic value in Mcc infection but also hold great significance in clarifying the pathogenic mechanism of Mcc. This study preliminarily elucidates the mechanism of Mcc HN-B-induced lung injury and provides a theoretical basis for further research on Mcc-host interactions.

2.
Curr Issues Mol Biol ; 45(12): 9723-9736, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38132453

ABSTRACT

Buffalo meat is gaining popularity for its nutritional properties, such as its low fat and cholesterol content. However, it is often unsatisfactory to consumers due to its dark color and low tenderness. There is currently limited research on the regulatory mechanisms of buffalo meat quality. Xinglong buffalo are raised in the tropical Hainan region and are undergoing genetic improvement from draught to meat production. For the first time, we evaluated the meat quality traits of Xinglong buffalo using the longissimus dorsi muscle and compared them to Hainan cattle. Furthermore, we utilized a multi-omics approach combining transcriptomics and metabolomics to explore the underlying molecular mechanism regulating meat quality traits. We found that the Xinglong buffalo had significantly higher meat color redness but lower amino acid content and higher shear force compared to Hainan cattle. Differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were identified, with them being significantly enriched in nicotinic acid and nicotinamide metabolic and glycine, serine, and threonine metabolic pathways. The correlation analysis revealed that those genes and metabolites (such as: GAMT, GCSH, PNP, L-aspartic acid, NADP+, and glutathione) are significantly associated with meat color, tenderness, and amino acid content, indicating their potential as candidate genes and biological indicators associated with meat quality. This study contributes to the breed genetic improvement and enhancement of buffalo meat quality.

3.
Int J Mol Sci ; 24(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36674828

ABSTRACT

Pasteurella multocida can cause goat hemorrhagic sepsis and endemic pneumonia. Respiratory epithelial cells are the first line of defense in the lungs during P. multocida infection. These cells act as a mechanical barrier and activate immune response to protect against invading pathogenic microorganisms. Upon infection, P. multocida adheres to the cells and causes changes in cell morphology and transcriptome. ATAC-seq was conducted to determine the changes in the chromatin open region of P. multocida-infected goat bronchial epithelial cells based on transcriptional regulation. A total of 13,079 and 28,722 peaks were identified in the control (CK) and treatment (T) groups (P. multocida infection group), respectively. The peaks significantly increased after P. multocida infection. The specific peaks for the CK and T groups were annotated to 545 and 6632 genes, respectively. KEGG pathway enrichment analysis revealed that the specific peak-related genes in the T group were enriched in immune reaction-related pathways, such as Fc gamma R-mediated phagocytosis, MAPK signaling pathway, bacterial invasion of epithelial cells, endocytosis, and autophagy pathways. Other cellular component pathways were also enriched, including the regulation of actin cytoskeleton, adherent junction, tight junction, and focal adhesion. The differential peaks between the two groups were subsequently analyzed. Compared to those in the CK group, 863 and 11 peaks were upregulated and downregulated, respectively, after the P. multocida infection. Fifty-six known transcription factor motifs were revealed in upregulated peaks in the P. multocida-infected group. By integrating ATAC-seq and RNA-seq, some candidate genes (SETBP1, RASGEF1B, CREB5, IRF5, TNF, CD70) that might be involved in the goat bronchial epithelial cell immune reaction to P. multocida infection were identified. Overall, P. multocida infection changed the structure of the cell and caused chromatin open regions to be upregulated. In addition, P. multocida infection actively mobilized the host immune response with the inflammatory phenotype. The findings provide valuable information for understanding the regulatory mechanisms of P. multocida-infected goat bronchial epithelial cells.


Subject(s)
Pasteurella multocida , Animals , Pasteurella multocida/genetics , Chromatin/genetics , Goats/genetics , Gene Expression Regulation , Epithelial Cells
4.
Front Microbiol ; 14: 1299303, 2023.
Article in English | MEDLINE | ID: mdl-38282733

ABSTRACT

The prevalence of infectious diseases in sheep and goats has a significant impact on the development of the sheep and goat industry and public health security. The identification and analysis of pathogens are crucial for infectious disease research; however, existing databases pay little attention to sheep and goat diseases, and pathogen data are relatively scattered. Therefore, the effective integration, analysis and visualization of these data will help us conduct in-depth research on sheep and goat infectious diseases and promote the formulation of disease prevention and control strategies. This article considered the pathogens of 44 infectious diseases in sheep and goats as the main research objects and collected and downloaded relevant scientific literature, pathogen genomes, pathogen transcriptomes, pathogen occurrence records, and other data. The C# programming language and an SQL Server database were used to construct and realize the functions of the Sheep and Goat Pathogen Database (SGPD) within a B/S architecture based on the ASP.NET platform. The SGPD mainly provides an integrated platform for sheep and goat pathogen data retrieval, auxiliary analysis, and user upload, including several functionalities: (1) a Disease Introduction module that queries basic information regarding the 44 recorded sheep and goat infectious diseases, such as epidemiology, clinical characteristics, diagnostic criteria, and prevention and control measures; (2) an Omics Information module that allows users to query and download the genome and transcriptome data related to the pathogens of sheep and goat infectious disease, and provide sequence alignment functionality; (3) a Pathogen Structure module that enables users to view electron micrographs of pathogen structure and tissue sections related to sheep and goat disease from publicly published research; (4) a Literature Search module based on the "Pathogen Dictionary" search strategy that facilitates searches for published research related to pathogens of infectious disease; (5) a Science Popularization module that allows users to view popular science materials related to sheep and goat infectious diseases; and (6) a Public Health module that allows users to query the risk factors of zoonotic disease transmission and the corresponding related literature, and realize the visualization of pathogen distribution. The SGPD is a specialized sheep and goat pathogen information database that provides comprehensive resources and technical support for sheep and goat infectious disease research, prevention, and control.

SELECTION OF CITATIONS
SEARCH DETAIL