Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.275
Filter
1.
Commun Biol ; 7(1): 996, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143411

ABSTRACT

Activating brown adipose tissue (BAT) improves systemic metabolism, making it a promising target for metabolic syndrome. BAT is activated by 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME), which we previously identified to be inversely associated with BMI and which directly improves metabolism in multiple tissues. Here we profile plasma lipidomics from 83 people and test which lipids' association with BMI replicates in a concordant direction using our novel tool ScreenDMT, whose power and validity we demonstrate via mathematical proofs and simulations. We find that the linoleic acid diols 12,13-diHOME and 9,10-diHOME are both replicably inversely associated with BMI and mechanistically activate calcium influx in mouse brown and white adipocytes in vitro, which implicates this signaling pathway and 9,10-diHOME as candidate therapeutic targets. ScreenDMT can be applied to test directional mediation, directional replication, and qualitative interactions, such as identifying biomarkers whose association is shared (replication) or opposite (qualitative interaction) across diverse populations.


Subject(s)
Body Mass Index , Calcium , Animals , Mice , Humans , Calcium/metabolism , Male , Adipocytes/metabolism , Female , Adipose Tissue, Brown/metabolism , Lipidomics
2.
China CDC Wkly ; 6(32): 799-803, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39157046

ABSTRACT

What is already known about this topic?: Fractures are a common and serious injury among children. While many studies have utilized clinical data, there is a lack of large-scale community-based research in China. What is added by this report?: This cross-sectional study provides national and regionally representative data on the prevalence of fractures among Chinese children aged 6-17 years (6.93%), with higher rates observed in males than in females (8.13% vs. 5.71%) and in rural areas compared to urban areas (7.22% vs. 6.62%). The most common site of fracture was the upper limbs (4.24%, accounting for 63.0% of fractures). What are the implications for public health practice?: The need to enhance awareness of fracture prevention is critical, particularly for children in rural areas and males in middle childhood. We recommend that local authorities increase investments in educational programs and child safety oversight. Additionally, promoting balanced diets for children, training in proper exercise techniques, and reinforcing participation in outdoor sports are essential.

3.
Adv Sci (Weinh) ; : e2407019, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158940

ABSTRACT

Electrolyte plays crucial roles in electrochemical CO2 reduction reaction (e-CO2RR), yet how it affects the e-CO2RR performance still being unclarified. In this work, it is reported that Sn-Zn hybrid oxide enables excellent CO2-to-HCOO- conversion in KHCO3 with a HCOO- Faraday efficiency ≈89%, a yield rate ≈0.58 mmol cm-2 h-1 and a stability up to ≈60 h at -0.93 V, which are higher than those in NaHCO3 and K2SO4. Systematical characterizations unveil that the surface reconstruction on Sn-Zn greatly depends on the electrolyte using: the Sn-SnO2/ZnO, the ZnO encapsulated Sn-SnO2/ZnO and the Sn-SnO2/Zn-ZnO are reconstructed on the surface by KHCO3, NaHCO3 and K2SO4, respectively. The improved CO2-to-HCOO- performance in KHCO3 is highly attributed to the reconstructed Sn-SnO2/ZnO, which can enhance the charge transportation, promote the CO2 adsorption and optimize the adsorption configuration, accumulate the protons by enhancing water adsorption/cleavage and limit the hydrogen evolution. The findings may provide insightful understanding on the relationship between electrolyte and surface reconstruction in e-CO2RR and guide the design of novel electrocatalyst for effective CO2 reduction.

4.
Nat Cell Biol ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117797

ABSTRACT

Caloric restriction and intermittent fasting prolong the lifespan and healthspan of model organisms and improve human health. The natural polyamine spermidine has been similarly linked to autophagy enhancement, geroprotection and reduced incidence of cardiovascular and neurodegenerative diseases across species borders. Here, we asked whether the cellular and physiological consequences of caloric restriction and fasting depend on polyamine metabolism. We report that spermidine levels increased upon distinct regimens of fasting or caloric restriction in yeast, flies, mice and human volunteers. Genetic or pharmacological blockade of endogenous spermidine synthesis reduced fasting-induced autophagy in yeast, nematodes and human cells. Furthermore, perturbing the polyamine pathway in vivo abrogated the lifespan- and healthspan-extending effects, as well as the cardioprotective and anti-arthritic consequences of fasting. Mechanistically, spermidine mediated these effects via autophagy induction and hypusination of the translation regulator eIF5A. In summary, the polyamine-hypusination axis emerges as a phylogenetically conserved metabolic control hub for fasting-mediated autophagy enhancement and longevity.

5.
Macromol Rapid Commun ; : e2400603, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39108066

ABSTRACT

The polymer solar cells (PSCs) have garnered substantial interest owing to their lightweight, cost-effectiveness, and flexibility, making them ideal for large-scale roll-to-roll manufacturing. In this study, two wide-bandgap (WBG) donor polymers, PFBiTPD and PClBiTPD, utilizing bithieno[3,4-c]pyrrole-4,6-dione (BiTPD) as the electron-accepting unit and fluorinated/chlorinated benzo[1,2-b:4,5-b']dithiophene (BDT) as the electron-donating moiety are designed and synthesized. The polymers demonstrated large optical bandgaps (exceeding 1.80 eV) and are blended with ITIC-4F to form the active layers in PSCs. The PFBiTPD-based devices showed a well-dispersed fibrillar network, facilitating efficient charge generation and transport. Thus, these devices attained a power conversion efficiency (PCE) of 8.60%, featuring a fill factor (FF) of 62.89%, an open-circuit voltage (Voc) of 0.88 V and a short-circuit current density (Jsc) of 15.54 mA cm-2. In contrast, PClBiTPD-based devices displayed lower performance due to less favorable morphology. The study underscores the importance of polymer design and morphology control in optimizing the photovoltaic performance of PSCs.

6.
Colloids Surf B Biointerfaces ; 243: 114140, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111157

ABSTRACT

Excessive local accumulation of reactive oxygen species (ROS) in vulvovaginal candidiasis (VVC) leads to oxidative stress and aggravates inflammation. This study aimed to optimize and synthesize four ROS-sensitive polyethylene glycol (PEG)-boride polymers (PB, PCB, BPB, and BCPCB). A nanomicelle (BCPCB-K) was constructed using BCPCB-encapsulated ketoconazole (KTZ). Finally, the depolymerization principle and ROS-sensitive drug release of BCPCB-K as well as its anti-Candida albicans (CA) and therapeutic effects on mice with VVC were explored through in vitro and in vivo experiments. BCPCB-K exhibited low toxicity to mammalian cells in vitro and good biocompatibility in vivo. It also improved the dispersion and solubility of the hydrophobic drug KTZ. Furthermore, BCPCB-K simultaneously scavenged ROS and released the drug, thus facilitating the antifungal and VVC-treating effects of KTZ. Overall, the findings of this study broadened the application of ROS-sensitive materials in the drug-loading and antifungal fields and provided a strategy for VVC treatment.

7.
Alzheimers Dement ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129310

ABSTRACT

INTRODUCTION: The apolipoprotein E (APOE) ε4 allele exerts a significant influence on peripheral inflammation and neuroinflammation, yet the underlying mechanisms remain elusive. METHODS: The present study enrolled 54 patients diagnosed with late-onset Alzheimer's disease (AD; including 28 APOE ε4 carriers and 26 non-carriers). Plasma inflammatory cytokine concentration was assessed, alongside bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) analysis of peripheral blood mononuclear cells (PBMCs). RESULTS: Plasma tumor necrosis factor α, interferon γ, and interleukin (IL)-33 levels increased in the APOE ε4 carriers but IL-7 expression notably decreased. A negative correlation was observed between plasma IL-7 level and the hippocampal atrophy degree. Additionally, the expression of IL-7R and CD28 also decreased in PBMCs of APOE ε4 carriers. ScRNA-seq data results indicated that the changes were mainly related to the CD4+ Tem (effector memory) and CD8+ Tem T cells. DISCUSSION: These findings shed light on the role of the downregulated IL-7/IL-7R pathway associated with the APOE ε4 allele in modulating neuroinflammation and hippocampal atrophy. HIGHLIGHTS: The apolipoprotein E (APOE) ε4 allele decreases plasma interleukin (IL)-7 and aggravates hippocampal atrophy in Alzheimer's disease. Plasma IL-7 level is negatively associated with the degree of hippocampal atrophy. The expression of IL-7R signaling decreased in peripheral blood mononuclear cells of APOE ε4 carriers Dysregulation of the IL-7/IL-7R signal pathways enriches T cells.

8.
Small ; : e2404983, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113343

ABSTRACT

The kinetically retarded sulfur evolution reactions and notorious lithium dendrites as the major obstacles hamper the practical implementation of lithium-sulfur batteries (LSBs). Dual metal atom catalysts as a new model are expected to show higher activity by their rational coupling. Herein, the dual-atom catalyst with coupled Ni─Co atom pairs (Ni/Co-DAC) is designed successfully by programmed approaches. The Ni─Co atom pairs alter the local electron structure and optimize the coordination configuration of Ni/Co-DAC, leading to the coupling effect for promoting the interconversion of sulfur and guiding lithium plating/striping. The LSB delivers a remarkable capacity of 818 mA h g-1 at 3.0 C and a low degeneration rate of 0.053% per cycle over 500 cycles. Moreover, the LSB with a high sulfur mass loading of 6.1 mg cm-2 and lean electrolyte dosage of 6.0 µL mgS -1 shows a remarkable areal capacity of 5.7 mA h cm-2.

9.
Sci Transl Med ; 16(760): eadl0715, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141698

ABSTRACT

Extracellular acyl-coenzyme A binding protein [ACBP encoded by diazepam binding inhibitor (DBI)] is a phylogenetically ancient appetite stimulator that is secreted in a nonconventional, autophagy-dependent fashion. Here, we show that low ACBP/DBI plasma concentrations are associated with poor prognosis in patients with anorexia nervosa, a frequent and often intractable eating disorder. In mice, anorexia induced by chronic restraint stress (CRS) is accompanied by a reduction in circulating ACBP/DBI concentrations. We engineered a chemical-genetic system for the secretion of ACBP/DBI through a biotin-activatable, autophagy-independent pathway. In transgenic mice expressing this system in hepatocytes, biotin-induced elevations in plasma ACBP/DBI concentrations prevented anorexia induced by CRS or chemotherapeutic agents including cisplatin, doxorubicin, and paclitaxel. ACBP/DBI reversed the CRS or cisplatin-induced increase in plasma lipocalin-2 concentrations and the hypothalamic activation of anorexigenic melanocortin 4 receptors, for which lipocalin-2 is an agonist. Daily intravenous injections of recombinant ACBP/DBI protein or subcutaneous implantation of osmotic pumps releasing recombinant ACBP/DBI mimicked the orexigenic effects of the chemical-genetic system. In conclusion, the supplementation of extracellular and peripheral ACBP/DBI might constitute a viable strategy for treating anorexia.


Subject(s)
Anorexia , Diazepam Binding Inhibitor , Animals , Diazepam Binding Inhibitor/metabolism , Anorexia/drug therapy , Anorexia/metabolism , Humans , Mice, Transgenic , Mice , Anorexia Nervosa/metabolism , Anorexia Nervosa/drug therapy , Lipocalin-2/metabolism , Lipocalin-2/blood , Hypothalamus/metabolism , Male , Female , Mice, Inbred C57BL , Restraint, Physical , Hepatocytes/metabolism , Hepatocytes/drug effects
10.
Cancer Sci ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136293

ABSTRACT

Immune checkpoint inhibitor (ICI) therapies for tumors of different systems have attained significant achievements and have changed the current situation of tumor treatment due to their therapeutic characteristics of high specificity and low side effects. The immune checkpoint Programmed death 1/Programmed cell death-Ligand 1 (PD-1/PD-L1) axis exerts a vital role in the immune escape of tumor cells. As a result, it has become a key target for tumor immunotherapy. Therefore, to perfect research into potential regulatory factors for the PD-1/PD-L1 axis, in order to understand and illustrate tumor ICI therapy mechanisms, is a significant goal. Moreover, ncRNA has been verified to regulate the PD-1/PD-L1 axis in the tumor immune microenvironment to regulate tumor genesis and development. ncRNAs can improve or decrease the efficacy of ICI therapy by modulating PD-L1 expression. This review aimed to investigate the mechanisms of action of ncRNA in regulating the PD-1/PD-L1 axis in ICI therapy, to provide more efficient immunotherapy for tumors of different systems.

11.
Small ; : e2403947, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38948958

ABSTRACT

Converting hierarchical biomass structure into cutting-edge architecture of electrocatalysts can effectively relieve the extreme dependency of nonrenewable fossil-fuel-resources typically suffering from low cost-effectiveness, scarce supplies, and adverse environmental impacts. A cost-effective cobalt-coordinated nanocellulose (CNF) strategy is reported for realizing a high-performance 2e-ORR electrocatalysts through molecular engineering of hybrid ZIFs-CNF architecture. By a coordination and pyrolysis process, it generates substantial oxygen-capturing active sites within the typically oxygen-insulating cellulose, promoting O2 mass and electron transfer efficiency along the nanostructured Co3O4 anchored with CNF-based biochar. The Co-CNF electrocatalyst exhibits an exceptional H2O2 electrosynthesis efficiency of ≈510.58 mg L-1 cm-2 h-1 with an exceptional superiority over the existing biochar-, or fossil-fuel-derived electrocatalysts. The combination of the electrocatalysts with stainless steel mesh serving as a dual cathode can strongly decompose regular organic pollutants (up to 99.43% removal efficiency by 30 min), showing to be a desirable approach for clean environmental remediation with sustainability, ecological safety, and high-performance.

12.
bioRxiv ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39005433

ABSTRACT

Memantine is an US Food and Drug Administration (FDA) approved drug that selectively inhibits NMDA-subtype ionotropic glutamate receptors (NMDARs) for treatment of dementia and Alzheimer's. NMDARs enable calcium influx into neurons and are critical for normal brain function. However, increasing evidence shows that calcium influx in neurological diseases is augmented by calcium-permeable AMPA-subtype ionotropic glutamate receptors (AMPARs). Here, we demonstrate that these calcium-permeable AMPARs (CP-AMPARs) are inhibited by memantine. Electrophysiology unveils that memantine inhibition of CP-AMPARs is dependent on their calcium permeability and the presence of their neuronal auxiliary subunit transmembrane AMPAR regulatory proteins (TARPs). Through cryo-electron microscopy we elucidate that memantine blocks CP-AMPAR ion channels in a unique mechanism of action from NMDARs. Furthermore, we demonstrate that memantine reverses a gain of function AMPAR mutation found in a patient with a neurodevelopmental disorder and inhibits CP-AMPARs in nerve injury. Our findings alter the paradigm for the memantine mechanism of action and provide a blueprint for therapeutic approaches targeting CP-AMPARs.

13.
Cureus ; 16(6): e62890, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39040714

ABSTRACT

Autoimmune hepatitis (AIH) is a T-cell-mediated liver disease characterized by elevated transaminases, circulating autoantibodies, hypergammaglobulinemia, and interface hepatitis. A 66-year-old female patient visited our department due to recurrent episodes of altered consciousness, sleep-wake inversion, and asterixis, indicating hepatic encephalopathy (HE). Her liver biopsy results clearly demonstrated interface hepatitis. The patient's severe HE does not parallel her relatively stable liver function and was attributed to a wide retroperitoneal collateral vein shunting blood directly into the inferior vena cava, bypassing the liver, and allowing excess neurotoxins to enter the central nervous system. Due to the unfavorable benefit-risk ratio of embolization and the patient's stable liver function, non-invasive treatments were adopted, and prednisolone was discontinued. The patient experienced no further episodes of HE thereafter. To the best of our knowledge, this is the first AIH case with a spontaneous portosystemic shunt directly shunting blood into the inferior vena cava. A crucial lesson from this case is that when HE cannot be fully explained by liver dysfunction, abdominal CT scans should be carefully inspected for possible anatomical variations. This case also underscores the importance of a multidisciplinary approach in managing AIH in elderly patients, who may benefit more from a tailored treatment regimen rather than strictly following standard treatment guidelines.

14.
Sci Adv ; 10(29): eado7826, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028805

ABSTRACT

For wearable electronics, radial scalability is one of the key research areas for fibrous energy storage devices to be commercialized, but this field has been shelved for years due to the lack of effective methods and configuration arrangements. Here, the team presents a generalizable strategy to realize radial scalability by applying a synchronous-twisting method (STM) for synthesizing a coaxial-extensible configuration (CEC). As examples, aqueous fiber-shaped Zn-MnO2 batteries and MoS2-MnO2 supercapacitors with a diameter of ~500 µm and a length of 100 cm were made. Because of the radial scalability, uniform current distribution, and stable binding force in CEC, the devices not only have high energy densities (~316 Wh liter-1 for Zn-MnO2 batteries and ~107 Wh liter-1 for MoS2-MnO2 supercapacitors) but also maintain a stable operational state in textiles when external bending and tensile forces were applied. The fabricating method together with the radial scalability of the devices provides a reference for future fiber-shaped energy storage devices.

15.
Invest Ophthalmol Vis Sci ; 65(8): 3, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38953846

ABSTRACT

Purpose: To investigate the correlation between apparent diffusion coefficient (ADC) histograms and high-risk clinicopathologic features related to uveal melanoma (UM) prognosis. Methods: This retrospective study included 53 patients with UM who underwent diffusion-weighted imaging (DWI) between August 2015 and March 2024. Axial DWI was performed with a single-shot spin-echo echo-planar imaging sequence. ADC histogram parameters of ADCmean, ADC50%, interquartile range (IQR), skewness, kurtosis, and entropy were obtained from DWI. The relationships between histogram parameters and high-risk clinicopathological characteristics including tumor size, preoperative retinal detachment, histological subtypes, Ki-67 index, and chromosome status, were analyzed by Spearman correlation analysis, Mann-Whitney U test, or Kruskal-Wallis test. Results: A total of 53 patients (mean ± SD age, 55 ± 15 years; 22 men) were evaluated. The largest basal diameter (LBD) was correlated with kurtosis (r = 0.311, P = 0.024). Tumor prominence (TP) was correlated with entropy (r = 0.581, P < 0.001) and kurtosis (r = 0.273, P = 0.048). Additionally, significant correlations were identified between the Ki-67 index and ADCmean (r = -0.444, P = 0.005), ADC50% (r = -0.487, P = 0.002), and skewness (r = 0.394, P = 0.014). Finally, entropy was correlated with monosomy 3 (r = 0.541, P = 0.017). Conclusions: The ADC histograms provided valuable insights into high-risk clinicopathologic features of UM and hold promise in the early prediction of UM prognosis.


Subject(s)
Diffusion Magnetic Resonance Imaging , Melanoma , Uveal Neoplasms , Humans , Uveal Neoplasms/pathology , Uveal Neoplasms/genetics , Male , Female , Middle Aged , Melanoma/pathology , Retrospective Studies , Prognosis , Diffusion Magnetic Resonance Imaging/methods , Adult , Aged , Echo-Planar Imaging/methods
16.
Inorg Chem ; 63(31): 14345-14353, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39033409

ABSTRACT

A biocompatible metal-organic framework (MOF), named HSTC-4, constructed using the flexible 4,4'-oxybis(benzoic acid) (OBA), was developed to enable efficient loading and controlled release of vitamin C (VC) through a combination of strategies involving ligand length, structure design, and metal selection. The kinetic product HSTC-4 demonstrates a propensity for transforming into the thermodynamically stable HSTC-5 under external stimuli, such as photoillumination and vacuum heating, as witnessed by single-crystal to single-crystal transformation. Density functional theory (DFT) calculations reveal that the VC guest molecules exhibit stronger binding affinity with HSTC-5 due to its narrower pores compared to HSTC-4, resulting in a slower release of VC from VC@HSTC-5. Furthermore, precise control over VC release can be achieved by introducing surface modifications involving SiO2 onto the structure of VC@HSCT-5, while simultaneously adjusting environmental factors such as pH and temperature conditions. Preliminary cell culture experiments and cytotoxicity assays highlight the biocompatibility of HSTC-5, suggesting that it is a promising platform for sustained drug delivery and diverse biomedical applications.


Subject(s)
Ascorbic Acid , Metal-Organic Frameworks , Thermodynamics , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Ascorbic Acid/chemistry , Kinetics , Humans , Density Functional Theory , Cell Survival/drug effects , Drug Carriers/chemistry , Molecular Structure , Drug Liberation
17.
Emerg Infect Dis ; 30(8): 1692-1696, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043456

ABSTRACT

Before the COVID-19 pandemic, Mycoplasma pneumoniae infections emerged during spring to summer yearly in Taiwan, but infections were few during the pandemic. M. pneumoniae macrolide resistance soared to 85.7% in 2020 but declined to 0% during 2022-2023. Continued molecular surveillance is necessary to monitor trends in macrolide-resistant M. pneumoniae.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Drug Resistance, Bacterial , Macrolides , Mycoplasma pneumoniae , Pneumonia, Mycoplasma , SARS-CoV-2 , Humans , Taiwan/epidemiology , Macrolides/pharmacology , Macrolides/therapeutic use , Mycoplasma pneumoniae/drug effects , Mycoplasma pneumoniae/genetics , Pneumonia, Mycoplasma/epidemiology , Pneumonia, Mycoplasma/drug therapy , Pneumonia, Mycoplasma/microbiology , COVID-19/epidemiology , Child , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Child, Preschool , Pandemics , Male , Female , Infant , Adolescent , Microbial Sensitivity Tests
18.
Front Med (Lausanne) ; 11: 1399638, 2024.
Article in English | MEDLINE | ID: mdl-39081691

ABSTRACT

Background: Dysnatremia is the most common electrolyte disorder in hospitalized patients. Sodium fluctuation level may be a better parameter in dysnatremia management. We aimed to examine the association between sodium fluctuation level during hospitalization and mortality and to evaluate its value in predicting poor prognosis among general hospitalized patients. Methods: Data were collected from patients admitted to Peking Union Medical College Hospital. The generalized estimated equation (GEE) was used to examine the relationship between sodium fluctuation level and mortality. Receiver-operating characteristic (ROC) curve analysis was performed to calculate the optimal cutoff value and the area under the ROC curve (AUC). Results: Sodium fluctuation level showed a dose-dependent association with increased mortality in general hospitalized patients. After adjusting age, sex, length of hospital stay, and Charlson comorbidity index, the ORs of group G2 to G6 were 5.92 (95% CI 5.16-6.79), 26.45 (95% CI 22.68-30.86), 50.71 (95% CI 41.78-61.55), 104.38 (95% CI 81.57-133.58), and 157.64 (95% CI 112.83-220.24), respectively, p trend <0.001. Both normonatremia and dysnatremia patients on admission had the dose-dependent associations similar to general hospitalized patients. The AUC of sodium fluctuation level was 0.868 (95% CI 0.859-0.877) in general hospitalized patients, with an optimal cutoff point of 7.5 mmol/L, a sensitivity of 76.5% and a specificity of 84.2%. Conclusion: We determined that sodium fluctuation level had a dose-dependent association with increased mortality in general hospitalized patients. Sodium fluctuation level could be used to develop a single parameter system in predicting mortality in general hospitalized patients with acceptable accuracy, sensitivity, and specificity.

19.
Cell Rep ; 43(7): 114491, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39002127

ABSTRACT

Tissues release microRNAs (miRNAs) in small extracellular vesicles (sEVs) including exosomes, which can regulate gene expression in distal cells, thus acting as modulators of local and systemic metabolism. Here, we show that insulin regulates miRNA secretion into sEVs from 3T3-L1 adipocytes and that this process is differentially regulated from cellular expression. Thus, of the 53 miRNAs upregulated and 66 miRNAs downregulated by insulin in 3T3-L1 sEVs, only 12 were regulated in parallel in cells. Insulin regulated this process in part by phosphorylating hnRNPA1, causing it to bind to AU-rich motifs in miRNAs, mediating their secretion into sEVs. Importantly, 43% of insulin-regulated sEV-miRNAs are implicated in obesity and insulin resistance. These include let-7 and miR-103, which we show regulate insulin signaling in AML12 hepatocytes. Together, these findings demonstrate an important layer to insulin's regulation of adipose biology and provide a mechanism of tissue crosstalk in obesity and other hyperinsulinemic states.


Subject(s)
Extracellular Vesicles , Insulin , MicroRNAs , Animals , Humans , Mice , 3T3-L1 Cells , Adipocytes/metabolism , Adipocytes/drug effects , Extracellular Vesicles/metabolism , Gene Expression Regulation , Hepatocytes/metabolism , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Heterogeneous Nuclear Ribonucleoprotein A1/genetics , Insulin/metabolism , Insulin Resistance , MicroRNAs/metabolism , MicroRNAs/genetics , Obesity/metabolism , Obesity/genetics , Phosphorylation , Signal Transduction
20.
ACS Appl Mater Interfaces ; 16(30): 38832-38851, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39016521

ABSTRACT

Phenotypic drug discovery (PDD), which involves harnessing biological systems directly to uncover effective drugs, has undergone a resurgence in recent years. The rapid advancement of artificial intelligence (AI) over the past few years presents numerous opportunities for augmenting phenotypic drug screening on microfluidic platforms, leveraging its predictive capabilities, data analysis, efficient data processing, etc. Microfluidics coupled with AI is poised to revolutionize the landscape of phenotypic drug discovery. By integrating advanced microfluidic platforms with AI algorithms, researchers can rapidly screen large libraries of compounds, identify novel drug candidates, and elucidate complex biological pathways with unprecedented speed and efficiency. This review provides an overview of recent advances and challenges in AI-based microfluidics and their applications in drug discovery. We discuss the synergistic combination of microfluidic systems for high-throughput screening and AI-driven analysis for phenotype characterization, drug-target interactions, and predictive modeling. In addition, we highlight the potential of AI-powered microfluidics to achieve an automated drug screening system. Overall, AI-powered microfluidics represents a promising approach to shaping the future of phenotypic drug discovery by enabling rapid, cost-effective, and accurate identification of therapeutically relevant compounds.


Subject(s)
Artificial Intelligence , Drug Discovery , Humans , Microfluidics/methods , Phenotype , High-Throughput Screening Assays/methods
SELECTION OF CITATIONS
SEARCH DETAIL