Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1386891, 2024.
Article in English | MEDLINE | ID: mdl-38881666

ABSTRACT

Introduction: Infection with SARS-CoV-2 begins in the upper respiratory tract and can trigger the production of mucosal spike-specific secretory IgA (sIgA), which provides protection against reinfection. It has been recognized that individuals with high level of nasal spike-specific IgA have a lower risk of reinfection. However, mucosal spike-specific sIgA wanes over time, and different individuals may have various level of spike-specific sIgA and descending kinetics, leading to individual differences in susceptibility to reinfection. A method for detecting spike-specific sIgA in the nasal passage would be valuable for predicting the risk of reinfection so that people at risk can have better preparedness. Methods: In this study, we describe the development of a colloidal gold-based immunochromatographic (ICT) strip for detecting SARS-CoV-2 Omicron spike-specific sIgA in nasal mucosal lining fluids (NMLFs). Results: The ICT strip was designed to detect 0.125 µg or more spike-specific sIgA in 80 µL of NMLFs collected using a nasal swab. Purified nasal sIgA samples from individuals who recently recovered from an Omicron BA.5 infection were used to demonstrate that this ICT strip can specifically detect spike-specific sIgA. The signal levels positively correlated with neutralizing activities against XBB. Subsequent analysis revealed that people with low or undetectable levels of spike-specific sIgA in the nasal passage were more susceptible to SARS-CoV-2 reinfection. Conclusions: This nasal spike-specific sIgA ICT strip provides a non-invasive, rapid, and convenient method to assess the risk of reinfection for achieving precision preparedness.

2.
bioRxiv ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38766079

ABSTRACT

Converging findings have established that the endocannabinoid (eCB) system serves as a possible target for the development of new treatments for pain as a complement to opioid-based treatments. Here we show in male and female mice that enhancing levels of the eCB, 2-arachidonoylglycerol (2-AG), through pharmacological inhibition of its catabolic enzyme, monoacylglycerol lipase (MAGL), either systemically or in the ventral tegmental area (VTA) with JZL184, leads to a substantial attenuation of the rewarding effects of opioids in male and female mice using conditioned place preference and self-administration paradigms, without altering their analgesic properties. These effects are driven by CB1 receptors (CB1Rs) within the VTA as VTA CB1R conditional knockout, counteracts JZL184's effects. Conversely, pharmacologically enhancing the levels of the other eCB, anandamide (AEA), by inhibition of fatty acid amide hydrolase (FAAH) has no effect on opioid reward or analgesia. Using fiber photometry with fluorescent sensors for calcium and dopamine (DA), we find that enhancing 2-AG levels diminishes opioid reward-related nucleus accumbens (NAc) activity and DA neurotransmission. Together these findings reveal that 2-AG counteracts the rewarding properties of opioids and provides a potential adjunctive therapeutic strategy for opioid-related analgesic treatments.

3.
Cell Rep ; 43(6): 114265, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38805396

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein continues to evolve antigenically, impacting antibody immunity. D1F6, an affinity-matured non-stereotypic VH1-2 antibody isolated from a patient infected with the SARS-CoV-2 ancestral strain, effectively neutralizes most Omicron variants tested, including XBB.1.5. We identify that D1F6 in the immunoglobulin G (IgG) form is able to overcome the effect of most Omicron mutations through its avidity-enhanced multivalent S-trimer binding. Cryo-electron microscopy (cryo-EM) and biochemical analyses show that three simultaneous epitope mutations are generally needed to substantially disrupt the multivalent S-trimer binding by D1F6 IgG. Antigenic mutations at spike positions 346, 444, and 445, which appeared in the latest variants, have little effect on D1F6 binding individually. However, these mutations are able to act synergistically with earlier Omicron mutations to impair neutralization by affecting the interaction between D1F6 IgG and the S-trimer. These results provide insight into the mechanism by which accumulated antigenic mutations facilitate evasion of affinity-matured antibodies.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Humans , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , COVID-19/virology , COVID-19/immunology , Epitopes/immunology , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Cryoelectron Microscopy , Protein Binding
4.
Chembiochem ; 25(6): e202300841, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38289703

ABSTRACT

The opioids are powerful analgesics yet possess contingencies that can lead to opioid-use disorder. Chemical probes derived from the opioid alkaloids can provide deeper insight into the molecular interactions in a cellular context. Here, we designed and developed photo-click morphine (PCM-2) as a photo-affinity probe based on morphine and dialkynyl-acetyl morphine (DAAM) as a metabolic acetate reporter based on heroin. Application of these probes to SH-SY5Y, HEK293T, and U2OS cells revealed that PCM-2 and DAAM primarily localize to the lysosome amongst other locations inside the cell by confocal microscopy and chemical proteomics. Interaction site identification by mass spectrometry revealed the mitochondrial phosphate carrier protein, solute carrier family 25 member 3, SLC25A3, and histone H2B as acylation targets of DAAM. These data illustrate the utility of chemical probes to measure localization and protein interactions in a cellular context and will inform the design of probes based on the opioids in the future.


Subject(s)
Analgesics, Opioid , Neuroblastoma , Humans , HEK293 Cells , Morphine
5.
Neuropharmacology ; 227: 109442, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36731721

ABSTRACT

Illicitly manufactured fentanyl is driving the current opioid crisis, and various fentanyl analogs are appearing in recreational drug markets worldwide. To assess the potential health risks posed by fentanyl analogs, it is necessary to understand structure-activity relationships for these compounds. Here we compared the pharmacology of two structurally related fentanyl analogs implicated in opioid overdose: cyclopropylfentanyl and valerylfentanyl. Cyclopropylfentanyl has a three-carbon ring attached to the carbonyl group on the fentanyl scaffold, whereas valerylfentanyl has a four-carbon chain at the same position. In vitro assays examining µ-opioid receptor (MOR) coupling to G proteins in CHO cells showed that cyclopropylfentanyl is a full agonist (EC50 = 8.6 nM, %Emax = 113%), with potency and efficacy similar to fentanyl (EC50 = 10.3 nM, %Emax = 113%). By contrast, valerylfentanyl is a partial agonist at MOR (EC50 = 179.8 nM, %Emax = 60%). Similar results were found in assays assessing MOR-mediated ß-arrestin recruitment in HEK cells. In vivo studies in male CD-1 mice demonstrated that both fentanyl analogs induce naloxone-reversible antinociception and respiratory suppression, but cyclopropylfentanyl is 100-times more potent as an antinociceptive agent (ED50 = 0.04 mg/kg, s. c.) than valerylfentanyl (ED50 = 4.0 mg/kg, s. c.). Molecular simulation results revealed that the alkyl chain of valerylfentanyl cannot be well accommodated by the active state of MOR and may transition the receptor toward an inactive state, converting the fentanyl scaffold to a partial agonist. Taken together, our results suggest that cyclopropylfentanyl presents much greater risk of adverse effects when compared to valerylfentanyl. Moreover, the summed findings may provide clues to the design of therapeutic opioids with reduced adverse side effects.


Subject(s)
Analgesics, Opioid , Fentanyl , Male , Mice , Animals , Cricetinae , Cricetulus , Fentanyl/pharmacology , Analgesics, Opioid/pharmacology , Naloxone , Structure-Activity Relationship , Receptors, Opioid, mu/agonists
6.
Int J Mol Sci ; 23(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35328429

ABSTRACT

The mu opioid receptor has a distinct place in the opioid receptor family, since it mediates the actions of most opioids used clinically (e.g., morphine and fentanyl), as well as drugs of abuse (e.g., heroin). The single-copy mu opioid receptor gene, OPRM1, goes through extensive alternative pre-mRNA splicing to generate numerous splice variants that are conserved from rodents to humans. These OPRM1 splice variants can be classified into three structurally distinct types: (1) full-length 7 transmembrane (TM) carboxyl (C)-terminal variants; (2) truncated 6TM variants; and (3) single TM variants. Distinct pharmacological functions of these splice variants have been demonstrated by both in vitro and in vivo studies, particularly by using several unique gene-targeted mouse models. These studies provide new insights into our understanding of the complex actions of mu opioids with regard to OPRM1 alternative splicing. This review provides an overview of the studies that used these gene-targeted mouse models for exploring the functional importance of Oprm1 splice variants.


Subject(s)
Analgesics, Opioid , Receptors, Opioid, mu , Alternative Splicing , Analgesics, Opioid/pharmacology , Animals , Mice , Models, Animal , Morphine/pharmacology , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism
7.
J Neurosci Res ; 100(1): 35-47, 2022 01.
Article in English | MEDLINE | ID: mdl-32506472

ABSTRACT

Heroin, a mu agonist, acts through the mu opioid receptor. The mu opioid receptor gene, OPRM1, undergoes extensive alternative splicing, creating an array of splice variants that are conserved from rodent to humans. Increasing evidence suggests that these OPRM1 splice variants are pharmacologically important in mediating various actions of mu opioids, including analgesia, tolerance, physical dependence, rewarding behavior, as well as addiction. In the present study, we examine expression of the OPRM1 splice variant mRNAs in the medial prefrontal cortex (mPFC), one of the major brain regions involved in decision-making and drug-seeking behaviors, of male human heroin abusers and male rats that developed stable heroin-seeking behavior using an intravenous heroin self-administration (SA) model. The results show similar expression profiles among multiple OPRM1 splice variants in both human control subjects and saline control rats, illustrating conservation of OPRM1 alternative splicing from rodent to humans. Moreover, the expressions of several OPRM1 splice variant mRNAs were dysregulated in the postmortem mPFCs from heroin abusers compared to the control subjects. Similar patterns were observed in the rat heroin SA model. These findings suggest potential roles of the OPRM1 splice variants in heroin addiction that could be mechanistically explored using the rat heroin SA model.


Subject(s)
Heroin , Receptors, Opioid, mu , Substance-Related Disorders/genetics , Alternative Splicing , Animals , Humans , Male , Prefrontal Cortex/metabolism , RNA, Messenger/metabolism , Rats , Receptors, Opioid, mu/genetics
9.
Biomolecules ; 11(10)2021 10 15.
Article in English | MEDLINE | ID: mdl-34680158

ABSTRACT

Most opioid analgesics used clinically, including morphine and fentanyl, as well as the recreational drug heroin, act primarily through the mu opioid receptor, a class A Rhodopsin-like G protein-coupled receptor (GPCR). The single-copy mu opioid receptor gene, OPRM1, undergoes extensive alternative splicing, creating multiple splice variants or isoforms via a variety of alternative splicing events. These OPRM1 splice variants can be categorized into three major types based on the receptor structure: (1) full-length 7 transmembrane (TM) C-terminal variants; (2) truncated 6TM variants; and (3) single TM variants. Increasing evidence suggests that these OPRM1 splice variants are pharmacologically important in mediating the distinct actions of various mu opioids. More importantly, the OPRM1 variants can be targeted for development of novel opioid analgesics that are potent against multiple types of pain, but devoid of many side-effects associated with traditional opiates. In this review, we provide an overview of OPRM1 alternative splicing and its functional relevance in opioid pharmacology.


Subject(s)
Alternative Splicing/genetics , Pain/genetics , RNA Precursors/genetics , Receptors, Opioid, mu/genetics , Analgesics, Opioid/chemistry , Analgesics, Opioid/therapeutic use , Humans , Morphine/chemistry , Morphine/therapeutic use , Pain/drug therapy , Pain/pathology , Protein Isoforms/genetics , RNA Splicing/genetics
10.
ACS Chem Neurosci ; 12(14): 2661-2678, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34213886

ABSTRACT

Dry leaves of kratom (mitragyna speciosa) are anecdotally consumed as pain relievers and antidotes against opioid withdrawal and alcohol use disorders. There are at least 54 alkaloids in kratom; however, investigations to date have focused around mitragynine, 7-hydroxy mitragynine (7OH), and mitragynine pseudoindoxyl (MP). Herein, we probe a few minor indole and oxindole based alkaloids, reporting the receptor affinity, G-protein activity, and ßarrestin-2 signaling of corynantheidine, corynoxine, corynoxine B, mitraciliatine, and isopaynantheine at mouse and human opioid receptors. We identify corynantheidine as a mu opioid receptor (MOR) partial agonist, whereas its oxindole derivative corynoxine was an MOR full agonist. Similarly, another alkaloid mitraciliatine was found to be an MOR partial agonist, while isopaynantheine was a KOR agonist which showed reduced ßarrestin-2 recruitment. Corynantheidine, corynoxine, and mitraciliatine showed MOR dependent antinociception in mice, but mitraciliatine and corynoxine displayed attenuated respiratory depression and hyperlocomotion compared to the prototypic MOR agonist morphine in vivo when administered supraspinally. Isopaynantheine on the other hand was identified as the first kratom derived KOR agonist in vivo. While these minor alkaloids are unlikely to play the majority role in the biological actions of kratom, they represent excellent starting points for further diversification as well as distinct efficacy and signaling profiles with which to probe opioid actions in vivo.


Subject(s)
Alcoholism , Mitragyna , Analgesics, Opioid/pharmacology , Animals , Indoles/pharmacology , Mice , Oxindoles/pharmacology , Receptors, Opioid , Secologanin Tryptamine Alkaloids
11.
Cell Mol Neurobiol ; 41(5): 827-834, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33978862

ABSTRACT

This special issue is a tribute to our mentor, colleague and friend, Gavril W. Pasternak, MD, PhD. Homage to the breadth and depth of his work (~ 450 publications) over a 40 career in pharmacology and medicine cannot be captured fully in one special issue, but the 22 papers collected herein represent seven of the topics near and dear to Gav's heart, and the colleagues, friends and mentees who held him near to theirs. The seven themes include: (1) sites and mechanisms of opioid actions in vivo; (2) development of novel analgesic agents; (3) opioid tolerance, withdrawal and addiction: mechanisms and treatment; (4) opioid receptor splice variants; (5) novel research tools and approaches; (6) receptor signaling and crosstalk in vitro; and (7) mentorship. This introduction to the issue summarizes contributions and includes formal and personal remembrances of Gav that illustrate his personality, warmth, and dedication to making a difference in patient care and people's lives.


Subject(s)
Analgesia/history , Analgesics, Opioid/history , Laboratory Personnel/history , Pain Management/history , Pain/history , Physicians/history , History, 20th Century , History, 21st Century , Humans , Receptors, Opioid/history
12.
Int J Mol Sci ; 22(7)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917474

ABSTRACT

There exist three main types of endogenous opioid peptides, enkephalins, dynorphins and ß-endorphin, all of which are derived from their precursors. These endogenous opioid peptides act through opioid receptors, including mu opioid receptor (MOR), delta opioid receptor (DOR) and kappa opioid receptor (KOR), and play important roles not only in analgesia, but also many other biological processes such as reward, stress response, feeding and emotion. The MOR gene, OPRM1, undergoes extensive alternative pre-mRNA splicing, generating multiple splice variants or isoforms. One type of these splice variants, the full-length 7 transmembrane (TM) Carboxyl (C)-terminal variants, has the same receptor structures but contains different intracellular C-terminal tails. The pharmacological functions of several endogenous opioid peptides through the mouse, rat and human OPRM1 7TM C-terminal variants have been considerably investigated together with various mu opioid ligands. The current review focuses on the studies of these endogenous opioid peptides and summarizes the results from early pharmacological studies, including receptor binding affinity and G protein activation, and recent studies of ß-arrestin2 recruitment and biased signaling, aiming to provide new insights into the mechanisms and functions of endogenous opioid peptides, which are mediated through the OPRM1 7TM C-terminal splice variants.


Subject(s)
Alternative Splicing , Opioid Peptides/metabolism , RNA Precursors/metabolism , Receptors, Opioid, mu/metabolism , Animals , Humans , Protein Isoforms/metabolism
13.
Trends Endocrinol Metab ; 32(5): 306-319, 2021 05.
Article in English | MEDLINE | ID: mdl-33676828

ABSTRACT

The steady rise in opioid users and abusers has uncovered multiple detrimental health consequences of perturbed opioid receptor signaling, thereby creating the need to better understand the biology of these systems. Among endogenous opioid networks, µ-receptors have received special attention due to their unprecedented biological complexity and broad implications in homeostatic functions. Here, we review the origin, molecular biology, and physiology of endogenous opioids with a special focus on µ-opioid receptor networks within the endocrine system. Moreover, we summarize the current evidence supporting an involvement of the latter in regulating distinct endocrine functions. Finally, we combine these insights to present an integrated perspective on µ-opioid receptor biology and provide an outlook on future studies and unresolved questions in this field.


Subject(s)
Analgesics, Opioid , Receptors, Opioid, mu , Endocrine System , Humans
14.
Cell Mol Neurobiol ; 41(5): 1059-1074, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33033993

ABSTRACT

The biased signaling has been extensively studied in the original mu opioid receptor (MOR-1), particularly through G protein and ß-arrestin2 signaling pathways. The concept that the G protein pathway is often linked to the therapeutic effect of the drug, while the ß-arrestin pathway is associated to the side effects has been proposed to develop biased analgesic compounds with limited side-effects associated with traditional opiates. The mu opioid receptor gene, OPRM1, undergoes extensive alternative pre-mRNA splicing, generating multiple splice variants or isoforms that are conserved from rodent to human. One type of the Oprm1 splice variants are the full-length 7 transmembrane (7TM) C-terminal splice variants, which have identical receptor structures including entire binding pocket, but contain a different intracellular C-terminal tail resulted from 3' alternative splicing. Increasing evidence suggest that these full-length 7TM C-terminal variants play important roles in mu opioid pharmacology, raising questions regarding biased signaling at these multiple C-terminal variants. In the present study, we investigated the effect of different C-terminal variants on mu agonist-induced G protein coupling, ß-arrestin2 recruitment, and ultimately, signaling bias. We found that mu agonists produced marked differences in G protein activation and ß-arrestin2 recruitment among various C-terminal variants, leading to biased signaling at various level. Particularly, MOR-1O, an exon 7-associated variant, showed greater ß-arrestin2 bias for most mu agonists than MOR-1, an exon 4-associated variant. Biased signaling of G protein-coupled receptors has been defined by evidences that different agonists can produce divergent signaling transduction pathways through a single receptor. Our findings that a single mu agonist can induce differential signaling through multiple 7TM splice variants provide a new perspective on biased signaling at least for Oprm1, which perhaps is important for our understanding of the complex mu opioid actions in vivo where all the 7TM splice variants co-exist.


Subject(s)
Alternative Splicing/physiology , Analgesics, Opioid/metabolism , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism , Signal Transduction/physiology , Alternative Splicing/genetics , Amino Acid Sequence , Analgesics, Opioid/pharmacology , Animals , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology , HEK293 Cells , Humans , Naltrexone/analogs & derivatives , Naltrexone/metabolism , Naltrexone/pharmacology , Protein Binding/physiology , Receptors, Opioid, mu/agonists , Signal Transduction/drug effects
16.
Mol Pharmacol ; 98(4): 518-527, 2020 10.
Article in English | MEDLINE | ID: mdl-32723770

ABSTRACT

The µ-opioid receptor gene undergoes extensive alternative splicing to generate an array of splice variants. One group of splice variants excludes the first transmembrane (TM) domain and contains six TM domains. These 6TM variants are essential for the action of a novel class of analgesic drugs, including 3-iodobenzoyl-6ß-naltrexamide, which is potent against a spectrum of pain models without exhibiting the adverse side effects of traditional opiates. The 6TM variants are also involved in analgesic action through other drug classes, including δ-opioid and κ-opioids and α 2-adrenergic drugs. Of the five 6TM variants in mouse, mouse µ-opioid receptor (mMOR)-1G is abundant and conserved from rodent to human. In the present study, we demonstrate a new function of mMOR-1G in enhancing expression of the full-length 7TM µ-opioid receptor, mMOR-1. When coexpressed with mMOR-1 in a Tet-Off inducible CHO cell line, mMOR-1G has no effect on mMOR-1 mRNA expression but greatly increases mMOR-1 protein expression in a dose-dependent manner determined by opioid receptor binding and [35S] guanosine 5'-3-O-(thio)triphosphate binding. Subcellular fractionation analysis using OptiPrep density gradient centrifugation shows an increase of functional mMOR-1 receptor in plasma membrane-enriched fractions. Using a coimmunoprecipitation approach, we further demonstrate that mMOR-1G physically associates with mMOR-1 starting at the endoplasmic reticulum, suggesting a chaperone-like function. These data provide a molecular mechanism for how mMOR-1G regulates expression and function of the full-length 7TM µ-opioid receptor. SIGNIFICANCE STATEMENT: The current study establishes a novel function of mouse µ-opioid receptor (mMOR)-1G, a truncated splice variant with six transmembrane (TM) domains of the mouse µ-opioid receptor gene, in enhancing expression of the full-length 7TM mMOR-1 through a chaperone-like function.


Subject(s)
Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism , Alternative Splicing , Animals , CHO Cells , Cell Line , Cricetulus , Endoplasmic Reticulum/metabolism , Genetic Variation , Humans , Protein Binding , Protein Domains , Protein Isoforms/chemistry , Protein Multimerization , Receptors, Opioid, mu/chemistry
17.
FASEB J ; 34(3): 4540-4556, 2020 03.
Article in English | MEDLINE | ID: mdl-31999011

ABSTRACT

The mu-opioid receptor gene, OPRM1, undergoes extensive alternative splicing, creating an array of splice variants that are conserved from rodent to human. Both mouse and human OPRM1 have five exon 5-associated seven transmembrane full-length carboxyl terminal variants, MOR-1B1, MOR-1B2, MOR-1B3, MOR-1B4, and MOR-1B5, all of which are derived from alternative 3' splicing from exon 3 to alternative sites within exon 5. The functional relevance of these exon 5-associated MOR-1Bs has been demonstrated in mu agonist-induced G protein coupling, adenylyl cyclase activity, receptor internalization and desensitization, and post-endocytic sorting, as well as region-specific expression at the mRNA level. In the present study, we mapped a polyadenylation site for both mouse and human MOR-1Bs that defines the 3'-untranslated regions (3'-UTR) of MOR-1Bs and stabilizes mMOR-1Bs mRNAs. We identified a conserved miR378a-3p sequence in the 3'-UTR of both mouse and human MOR-1BS transcripts through which miR-378a-3p can regulate the expression of MOR-1Bs at the mRNA level. Chronic morphine treatment significantly increased the miR-378-3p level in Be(2)C cells and the brainstem of the morphine tolerant mice, contributing to the decreased expression of the mouse and human MOR-1B3 and MOR-1B4. Our study provides new insights into the role of miRNAs and Oprm1 splice variants in morphine tolerance.


Subject(s)
Exons/genetics , MicroRNAs/metabolism , Morphine/therapeutic use , 3' Untranslated Regions/genetics , Animals , Binding Sites/genetics , Brain Stem/drug effects , Brain Stem/metabolism , Cell Line , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Plasmids/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism , Reverse Transcriptase Polymerase Chain Reaction
18.
Handb Exp Pharmacol ; 258: 89-125, 2020.
Article in English | MEDLINE | ID: mdl-31598835

ABSTRACT

Opioid analgesics, most of which act through mu opioid receptors, have long represented valuable therapeutic agents to treat severe pain. Concerted drug development efforts for over a 100 years have resulted in a large variety of opioid analgesics used in the clinic, but all of them continue to exhibit the side effects, especially respiratory depression, that have long plagued the use of morphine. The recent explosion in fatalities resulting from overdose of prescription and synthetic opioids has dramatically increased the need for safer analgesics, but recent developments in mu receptor research have provided new strategies to develop such drugs. This chapter reviews recent advances in developing novel opioid analgesics from an understanding of mu receptor structure and function. This includes a summary of the mechanism of agonist binding deduced from the crystal structure of mu receptors. It will also highlight the development of novel agonist mechanisms, including biased agonists, bivalent ligands, and allosteric modulators of mu receptor function, and describe how receptor phosphorylation modulates these pathways. Finally, it will summarize research on the alternative pre-mRNA splicing mechanisms that produces a multiplicity of mu receptor isoforms. Many of these isoforms exhibit different pharmacological specificities and brain circuitry localization, thus providing an opportunity to develop novel drugs with increased therapeutic windows.


Subject(s)
Analgesics, Opioid/pharmacology , Pain/drug therapy , Receptors, Opioid, mu , Humans , Ligands , Opioid-Related Disorders
19.
Mol Brain ; 12(1): 98, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31775826

ABSTRACT

We have examined the regulation of mutually exclusive Cav2.2 exon 37a and b variants by the mouse µ-opioid receptor (mMOR) C-terminal splice variants 1, 1C and 1O in tsA-201 cells. Electrophysiological analyses revealed that both channel isoforms exhibit DAMGO-induced voltage-dependent (Gßγ-mediated) inhibition and its recovery by voltage pre-pulses, as well as a voltage-independent component. However, the two channel isoforms differ in their relative extent of voltage-dependent and independent inhibition, with Cav2.2-37b showing significantly more voltage-dependent inhibition upon activation of the three mMOR receptors studied. In addition, coexpression of either mMOR1 or mMOR1C results in an agonist-independent reduction in the peak current density of Cav2.2-37a channels, whereas the peak current density of Cav2.2-37b does not appear to be affected. Interestingly, this decrease is not due to an effect on channel expression at the plasma membrane, as demonstrated by biotinylation experiments. We further examined the mechanism underlying the agonist-independent modulation of Cav2.2-37a by mMOR1C. Incubation of cells with pertussis toxin did not affect the mMOR1C mediated inhibition of Cav2.2-37a currents, indicating a lack of involvement of Gi/o signaling. However, when a Src tyrosine kinase inhibitor was applied, the effect of mMOR1C was lost. Moreover, when we recorded currents using a Cav2.2-37a mutant in which tyrosine 1747 was replaced with phenylalanine (Y1747F), the agonist independent effects of mMOR1C were abolished. Altogether our findings show that Cav2.2-37a and Cav2.2-37b isoforms are subject to differential regulation by C-terminal splice variants of mMORs, and that constitutive mMOR1C activity and downstream tyrosine kinase activity exert a selective inhibition of the Cav2.2-37a splice variant, an N-type channel isoform that is highly enriched in nociceptors. Our study provides new insights into the roles of the MOR full-length C-terminal variants in modulating Cav2.2 channel isoform activities.


Subject(s)
Alternative Splicing/genetics , Calcium Channels, N-Type/genetics , Exons/genetics , Receptors, Opioid, mu/genetics , Animals , Calcium Channels, N-Type/metabolism , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , GTP-Binding Proteins/metabolism , Ion Channel Gating/genetics , Mice , Protein-Tyrosine Kinases/metabolism , Rats , Receptors, Opioid, mu/metabolism
20.
Mol Pharmacol ; 96(2): 247-258, 2019 08.
Article in English | MEDLINE | ID: mdl-31243060

ABSTRACT

Circular RNAs (circRNAs) are a distinct category of single-stranded, covalently closed RNAs formed by backsplicing. The functions of circRNAs are incompletely known and are under active investigation. Here, we report that in addition to traditional linear mRNAs (linRNA), mouse, rat, and human opioid receptor genes generate exonic circRNA isoforms. Using standard molecular biologic methods, Oprm1 circRNAs (circOprm1) were detected in RNAs of rodent and human brains and spinal cords, as well as human neuroblastoma cells, suggesting evolutionary conservation. Sequencing confirmed backsplicing using canonical splice sites. Oprm1 circRNAs were sense-stranded circRNAs resistant to RNase R digestion. The relative abundance of Oprm1 circRNA to linRNA determined by quantitative reverse transcription polymerase chain reaction varied among mouse brain regions, with circRNA isoforms predominating in rostral structures and less abundant in brain stem. Chronic morphine exposure in mice increased brain circOprm1e2.3 and circOprm1.e2.e3.e4(302) levels by 1.5- to 1.6-fold relative to linRNA. Sequence analysis predicted numerous microRNA binding sites within Oprm1 circRNA sequences, suggesting a potential role in microRNA sequestration through sponging. In addition, we observed that other opioid receptor genes including δ, κ, and nociceptin receptor genes produced similar circRNAs. In conclusion, all members of the opioid receptor gene family express circRNAs, with Oprm1 circRNA levels exceeding those of linear forms in some regions. SIGNIFICANCE STATEMENT: The modulation of Oprm1 circular RNA (circRNA) expression by morphine, coupled with the high abundance and existence of potential miRNA binding sites with circRNA sequences suggests the potential role of Oprm1 circRNAs in chronic opioid effects such as tolerance.


Subject(s)
Brain/metabolism , Morphine/pharmacology , Neuroblastoma/genetics , RNA, Circular/genetics , Spinal Cord/metabolism , Animals , Cell Line, Tumor , Conserved Sequence , Gene Expression Profiling , Gene Expression Regulation/drug effects , Humans , Male , Mice , Rats , Receptors, Opioid, mu/genetics , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL