Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Shellfish Immunol ; 150: 109662, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821229

ABSTRACT

SIRT6, a key member of the sirtuin family, plays a pivotal role in regulating a number of vital biological processes, including energy metabolism, oxidative stress, and immune system modulation. Nevertheless, the function of SIRT6 in bony fish, particularly in the context of antiviral immune response, remains largely unexplored. In this study, a sirt6 was cloned and characterized in a commercial fish, the Chinese perch (Siniperca chuatsi). The SIRT6 possesses conserved SIR2 domain with catalytic core region when compared with other vertebrates. Tissue distribution analysis indicated that sirt6 was expressed in all detected tissues, and the sirt6 was significantly induced following infection of infectious haemorrhagic syndrome virus (IHSV). The overexpression of SIRT6 resulted in significant upregulation of interferon-stimulated genes (ISGs), such as viperin, mx, isg15, irf3 and ifp35, and inhibited viral replication. It was further found that SIRT6 was located in nucleus and could enhance the expression of ISGs induced by type I and II IFNs. These findings may provide new information in relation with the function of SIRT6 in vertebrates, and with viral prevention strategy development in aquaculture.


Subject(s)
Amino Acid Sequence , Fish Diseases , Fish Proteins , Gene Expression Regulation , Immunity, Innate , Perches , Phylogeny , Rhabdoviridae Infections , Sirtuins , Animals , Sirtuins/genetics , Sirtuins/immunology , Sirtuins/metabolism , Fish Diseases/immunology , Fish Diseases/virology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Immunity, Innate/genetics , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/veterinary , Gene Expression Regulation/immunology , Perches/immunology , Sequence Alignment/veterinary , Gene Expression Profiling/veterinary
2.
Fish Shellfish Immunol ; 149: 109614, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710342

ABSTRACT

Chemokines are critical molecules involved in immune reaction and immune system homeostasis, and some chemokines play a role in antiviral immunity. It is not known if the C-C motif chemokine ligand 3 (CCL3), a member of the CC chemokine family, possesses antiviral properties in fish. In this study, a ccl3 was cloned from the mandarin fish (Siniperca chuatsi), and it has an open reading frame (ORF) of 276 base pairs, which are predicted to encode a 91-amino acid peptide. Mandarin fish CCL3 revealed conserved sequence features with four cysteine residues and closely relationships with the CCL3s from other vertebrates based on the sequence alignment and phylogenetic analysis. The transcripts of ccl3 were notably enriched in immune-related organs, such as spleen and gills in healthy mandarin fish, and the ccl3 was induced in the isolated mandarin fish brain (MFB) cells following infection with infectious spleen and kidney necrosis virus (ISKNV). Moreover, in MFB cells, overexpression of CCL3 induced immune factors, such as IL1ß, TNFα, MX, IRF1 and IFNh, and exhibited antiviral activity against ISKNV. This study sheds light on the immune role of CCL3 in immune response of mandarin fish, and its antiviral defense mechanism is of interest for further investigation.


Subject(s)
Amino Acid Sequence , DNA Virus Infections , Fish Diseases , Fish Proteins , Immunity, Innate , Iridoviridae , Perciformes , Phylogeny , Sequence Alignment , Animals , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Fish Diseases/immunology , Fish Diseases/virology , Perciformes/immunology , Perciformes/genetics , DNA Virus Infections/immunology , DNA Virus Infections/veterinary , Iridoviridae/physiology , Sequence Alignment/veterinary , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Chemokine CCL3/genetics , Chemokine CCL3/immunology , Cloning, Molecular , Gene Expression Profiling/veterinary , Base Sequence
3.
Poult Sci ; 103(6): 103673, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564837

ABSTRACT

Type IV interferon (IFN) has been shown to be a cytokine with antiviral activity in fish and amphibian. But, it has not been cloned and characterized functionally in avian species. In this study, type IV IFN, IFN-υ, and its 2 possible receptors, IFN-υR1 and IL10RB, were identified from an avian species, the mallard (Anas platyrhynchos). Mallard IFN-υ has a 531 bp open reading frame (ORF), encoding 176 amino acids (aa), and has highly conserved features as reported in different species, with an N-terminal signal peptide and a predicted multi-helix structure. The IFN-υR1 and IL10RB contain 528 and 343 aa, respectively, with IFN-υR1 protein containing JAK1 and STAT binding sites, and IL10RB containing TYK2 binding site. These 2 receptor subunits also possess 3 domains, the N-terminal extracellular domain, the transmembrane domain, and the C-terminal intracellular domain. Expression analysis indicated that IFN-υ, IFN-υR1 and IL10RB were widely expressed in examined organs/tissues, with the highest level observed in pancreas, blood, and kidney, respectively. The expression of IFN-υ, IFN-υR1 and IL10RB in liver, spleen or kidney was significantly upregulated after stimulation with polyI:C. Furthermore, recombinant IFN-υ protein induced the expression of ISGs, and the receptor of IFN-υ was verified as IFN-υR1 and IL10RB using a chimeric receptor approach in HEK293 cells. Taken together, these results indicate that IFN-υ is involved in the host innate immune response in mallard.


Subject(s)
Avian Proteins , Ducks , Interleukin-10 Receptor beta Subunit , Animals , Ducks/genetics , Interleukin-10 Receptor beta Subunit/genetics , Interleukin-10 Receptor beta Subunit/chemistry , Interleukin-10 Receptor beta Subunit/metabolism , Avian Proteins/genetics , Avian Proteins/chemistry , Avian Proteins/metabolism , Amino Acid Sequence , Phylogeny , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Receptors, Interferon/chemistry , Sequence Alignment/veterinary , Immunity, Innate , Interferons/genetics , Interferons/metabolism , Gene Expression Profiling/veterinary
4.
J Immunol ; 210(10): 1494-1507, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37010945

ABSTRACT

IFN-stimulated genes (ISGs) can act as effector molecules against viral infection and can also regulate pathogenic infection and host immune response. N-Myc and STAT interactor (Nmi) is reported as an ISG in mammals and in fish. In this study, the expression of Nmi was found to be induced significantly by the infection of Siniperca chuatsi rhabdovirus (SCRV), and the induced expression of type I IFNs after SCRV infection was reduced following Nmi overexpression. It is observed that Nmi can interact with IRF3 and IRF7 and promote the autophagy-mediated degradation of these two transcription factors. Furthermore, Nmi was found to be interactive with IFP35 through the CC region to inhibit IFP35 protein degradation, thereby enhancing the negative role in type I IFN expression after viral infection. In turn, IFP35 is also capable of protecting Nmi protein from degradation through its N-terminal domain. It is considered that Nmi and IFP35 in fish can also interact with each other in regulating negatively the expression of type I IFNs, but thus in enhancing the replication of SCRV.


Subject(s)
Interferon Type I , Intracellular Signaling Peptides and Proteins , Animals , Interferon Type I/metabolism , Fishes
5.
J Immunol ; 210(11): 1771-1789, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37017564

ABSTRACT

The type IV IFN (IFN-υ) is reported in vertebrates from fish to primary mammals with IFN-υR1 and IL-10R2 as receptor subunits. In this study, the proximal promoter of IFN-υ was identified in the amphibian model, Xenopus laevis, with functional IFN-sensitive responsive element and NF-κB sites, which can be transcriptionally activated by transcription factors, such as IFN regulatory factor (IRF)1, IRF3, IRF7, and p65. It was further found that IFN-υ signals through the classical IFN-stimulated gene (ISG) factor 3 (ISGF3) to induce the expression of ISGs. It seems likely that the promoter elements of the IFN-υ gene in amphibians is similar to type III IFN genes, and that the mechanism involved in IFN-υ induction is very much similar to type I and III IFNs. Using recombinant IFN-υ protein and the X. laevis A6 cell line, >400 ISGs were identified in the transcriptome, including ISGs homologous to humans. However, as many as 268 genes were unrelated to human or zebrafish ISGs, and some of these ISGs were expanded families such as the amphibian novel TRIM protein (AMNTR) family. AMNTR50, a member in the family, was found to be induced by type I, III, and IV IFNs through IFN-sensitive responsive element sites of the proximal promoter, and this molecule has a negative role in regulating the expression of type I, III, and IV IFNs. It is considered that the current study contributes to the understanding of transcription, signaling, and functional aspects of type IV IFN at least in amphibians.


Subject(s)
Interferon Type I , Interferons , Animals , Humans , Xenopus laevis , Interferons/genetics , Interferons/metabolism , Zebrafish/metabolism , Gene Expression Regulation , Signal Transduction , Interferon Type I/metabolism , Mammals/metabolism
6.
Dev Comp Immunol ; 139: 104589, 2023 02.
Article in English | MEDLINE | ID: mdl-36403789

ABSTRACT

In mammals, type II interferon (IFN; i.e. IFN-γ) signalling transduces through its specific receptors IFN-γR1 and IFN-γR2. In an osteoglossiform fish, the arapaima Arapaima gigas, three type II IFNs, IFN-γ-like, IFN-γ and IFN-γrel, and their four possible receptor subunits IFN-γR1-1, IFN-γR1-2, IFN-γR2-1 and IFN-γR2-2 were identified in this study. The three type II IFN genes are composed of four exons and three introns, and they all contain IFN-γ signature motif and signal peptide, with the presence of potential nuclear localization signal (NLS) in IFN-γ-like and IFN-γ. The IFN-γR1-1, IFN-γR1-2, IFN-γR2-1 and IFN-γR2-2 are composed of seven exons and six introns, with predicted IFN-γR1-1 and IFN-γR1-2 proteins containing JAK1 and STAT1 binding sites, and IFN-γR2-1 and IFN-γR2-2 containing JAK2 binding sites. Gene synteny analysis showed that the type II IFN and their receptor loci are duplicated in arapaima. All these genes were expressed constitutively in all organs/tissues examined, and responded to the stimulation of polyI:C. The prokaryotic recombinant IFN-γ-like, IFN-γ and IFN-γrel proteins can significantly induce the upregulation of immune-related genes in trunk kidney leucocytes. The ligand-receptor relationship analyses revealed that recombinant IFN-γ-like, IFN-γ, and IFN-γrel transduce downstream signalling through IFN-γR1-1/IFN-γR2-1, IFN-γR1-2/IFN-γR2-2, and IFN-γR1-1, respectively, in xenogeneic cells with the overexpression of original or chimeric receptors. In addition, tyrosine (Y) 366 and Y377 in the intracellular region may be essential for the function of IFN-γR1-2 and IFN-γR1-1, respectively. The finding of type II IFN system in A. gigas thus provides different knowledge in understanding the diversity and evolution of type II IFN ligand-receptor relationships in vertebrates.


Subject(s)
Interferon-gamma , Mammals , Animals , Interferon-gamma/genetics , Ligands
7.
Dev Comp Immunol ; 134: 104461, 2022 09.
Article in English | MEDLINE | ID: mdl-35660570

ABSTRACT

Type I interferons (IFNs) are critical cytokines for the establishment of antiviral status in fish, amphibian, avian and mammal, but the knowledge on type I IFNs is rather limited in reptile. In this study, seven type I IFN genes, designed as IFN1 to IFN7, were identified from a reptile species, the Chinese soft-shelled turtle (Pelodiscus sinensis). These identified type I IFNs have relatively low protein identity, when compared with those in human and chicken; but they possess conserved cysteines, predicted multi-helix structure and N-terminal signal peptide. The Chinese soft-shelled turtle IFN1 to IFN5 have two exons and one intron, but IFN6 and IFN7 are the single-exon genes. Chinese soft-shelled turtle type I IFNs are located respectively on the two conserved reptile-bird loci, named as Locus a and Locus c, and are clustered into the four of the five reptile-bird groups (named as Groups I-V) based on phylogenetic evidence, due to the lack of IFNK in the turtle. Moreover, the Chinese soft-shelled turtle type I IFNs can be induced by soft-shelled turtle iridovirus (STIV) infection and show antiviral activity in soft-shelled turtle artery (STA) cells, except IFN6. In addition, due to the difference in genome organizations, such as the number of exons and introns of type I IFN genes from fish to mammal, the definition and evolution of 'intronless' type I IFN genes were discussed in lineages of vertebrates. Thus, the finding of type I IFNs on two different loci in P. sinensis sheds light on the evolution of type I IFN genes in vertebrates.


Subject(s)
Interferon Type I , Turtles , Animals , Antiviral Agents/metabolism , China , Interferon Type I/genetics , Mammals , Phylogeny , Reptiles , Synteny , Turtles/genetics , Turtles/metabolism
8.
Fish Shellfish Immunol ; 117: 70-81, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34274423

ABSTRACT

In fish, type I IFNs are classified into three groups, i.e. Group I, Group II and Group III, which are further divided into seven subgroups according to the number of conservative cysteines, phylogenetic relationship, and probably their receptor complexes. In the present study, four type I IFNs and four cytokine receptor family B members (CRFBs) were identified in the Asian arowana, Scleropages formosus, an ancient species in the Osteoglossomorpha with commercial and conservation values. According to multiple sequence alignment and phylogenetic relationship, the four type I IFNs are named as IFNa1, IFNa2, IFNb and IFNc, with the former two belonging to Group I, and the latter two to Group II. The four receptors are named as CRFB1, CRFB2, CRFB5a and CRFB5b. The IFNs and their possible receptor genes are widely expressed in examined organs/tissues, and are induced following the stimulation of polyinosinic polycytidylic acid (polyI:C) in vivo. It was found that IFNa1, IFNa2, IFNb and IFNc use preferentially the receptor complexes, CRFB1 and CRFB5b, CRFB1 and CRFB5b, CRFB2 and CRFB5a, and CRFB2 and CRFB5b, respectively, indicating the evolutionary diversification in the interaction of type I IFNs and their receptors in this ancient fish species, S. formosus.


Subject(s)
Fish Proteins/immunology , Fishes/immunology , Interferon Type I/immunology , Receptors, Interferon/immunology , Amino Acid Sequence , Animals , Fishes/genetics , Gene Expression , Interferon Type I/genetics , Phylogeny , Receptors, Interferon/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...