Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters











Publication year range
1.
Reprod Toxicol ; 129: 108671, 2024 10.
Article in English | MEDLINE | ID: mdl-39038764

ABSTRACT

Maternal prenatal hypoxia is an important contributor to intrauterine growth restriction (IUGR), which impedes fetal lung maturation and leads to the development of chronic lung diseases. Although evidence suggests the involvement of pyroptosis in IUGR, the molecular mechanism of pyroptosis is still unclear. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been found to potentially interact with gasdermin D (GSDMD), the key protein responsible for pyroptosis, indicating its crucial role in inhibiting pyroptosis. Therefore, we hypothesized that Nrf2 deficiency is a key molecular responsible for lung pyroptosis in maternal hypoxia-induced IUGR offspring mice. Pregnant WT and Nrf2-/- mice were exposed to hypoxia (10.5 % O2) to mimic IUGR model. We assessed body weight, lung histopathology, pulmonary angiogenesis, oxidative stress levels, as well as mRNA and protein expressions related to inflammation in the 2-week-old offspring. Additionally, we conducted a dual-luciferase reporter assay to confirm the targeting relationship between Nrf2 and GSDMD. Our findings revealed that offspring with maternal hypoxia-induced IUGR exhibited reduced birth weight, catch-up growth delay, and pulmonary dysplasia. Furthermore, we observed impaired nuclear translocation of Nrf2 and increased GSDMD-mediated pyroptosis in these offspring with IUGR. Moreover, the dual-luciferase reporter assay demonstrated that Nrf2 could directly inhibit GSDMD transcription; deficiency of Nrf2 exacerbated pyroptosis and pulmonary dysplasia in offspring with maternal hypoxia-induced IUGR. Collectively, our findings suggest that Nrf2 deficiency induces GSDMD-mediated pyroptosis and pulmonary dysplasia in offspring with maternal hypoxia-induced IUGR; thus highlighting the potential therapeutic approach of targeting Nrf2 for treating prenatal hypoxia-induced pulmonary dysplasia in offspring.


Subject(s)
Fetal Growth Retardation , Hypoxia , Lung , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2 , Pyroptosis , Animals , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Pregnancy , Female , Hypoxia/complications , Lung/pathology , Lung/metabolism , Mice , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Prenatal Exposure Delayed Effects , Male , Oxidative Stress , Gasdermins
2.
Sci Rep ; 14(1): 16904, 2024 07 23.
Article in English | MEDLINE | ID: mdl-39043832

ABSTRACT

Hyperproliferation of vascular smooth muscle cells (VSMCs) is a driver of hypertensive vascular remodeling. This study aimed to uncover the mechanism of BTB and CNC homology 1 (BACH1) and microRNAs (miRNAs) in VSMC growth and hypertensive vascular remodeling. With the help of TargetScan, miRWalk, miRDB, and miRTarBase online database, we identified that BACH1 might be targeted by miR-196a-5p, and overexpressed in VSMCs and aortic tissues from spontaneously hypertensive rats (SHRs). Gain- and loss-of-function experiments demonstrated that miR-196a-5p suppressed VSMC proliferation, oxidative stress and hypertensive vascular remodeling. Double luciferase reporter gene assay and functional verification showed that miR-196a-5p cracked down the transcription and translation of BACH1 in both Wistar Kyoto rats (WKYs) and SHRs. Silencing BACH1 mimicked the actions of miR-196a-5p overexpression on attenuating the proliferation and oxidative damage of VSMCs derived from SHRs. Importantly, miR-196a-5p overexpression and BACH1 knockdown cooperatively inhibited VSMC proliferation and oxidative stress in SHRs. Furthermore, miR-196a-5p, if knocked down in SHRs, aggravated hypertension, upregulated BACH1 and promoted VSMC proliferation, all contributing to vascular remodeling. Taken together, targeting miR-196a-5p to downregulate BACH1 may be a promising strategy for retarding VSMC proliferation and hypertensive vascular remodeling.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Cell Proliferation , MicroRNAs , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Oxidative Stress , Rats, Inbred SHR , Vascular Remodeling , Animals , Humans , Male , Rats , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Cell Proliferation/genetics , Gene Expression Regulation , Hypertension/metabolism , Hypertension/genetics , Hypertension/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Rats, Inbred WKY , Vascular Remodeling/genetics
3.
Exp Lung Res ; 50(1): 25-41, 2024.
Article in English | MEDLINE | ID: mdl-38419581

ABSTRACT

BACKGROUND: The transcriptional repressor B-cell lymphoma 6 (BCL6) has been reported to inhibit inflammation. So far, experimental evidence for the role of BCL6 in bronchopulmonary dysplasia (BPD) is lacking. Our study investigated the roles of BCL6 in the progression of BPD and its downstream mechanisms. METHODS: Hyperoxia or lipopolysaccharide (LPS) was used to mimic the BPD mouse model. To investigate the effects of BCL6 on BPD, recombination adeno-associated virus serotype 9 expressing BCL6 (rAAV9-BCL6) and BCL6 inhibitor FX1 were administered in mice. The pulmonary pathological changes, inflammatory chemokines and NLRP3-related protein were observed. Meanwhile, BCL6 overexpression plasmid was used in human pulmonary microvascular endothelial cells (HPMECs). Cell proliferation, apoptosis, and NLRP3-related protein were detected. RESULTS: Either hyperoxia or LPS suppressed pulmonary BCL6 mRNA expression. rAAV9-BCL6 administration significantly inhibited hyperoxia-induced NLRP3 upregulation and inflammation, attenuated alveolar simplification and dysregulated angiogenesis in BPD mice, which were characterized by decreased mean linear intercept, increased radical alveolar count and alveoli numbers, and the upregulated CD31 expression. Meanwhile, BCL6 overexpression promoted proliferation and angiogenesis, inhibited apoptosis and inflammation in hyperoxia-stimulated HPMECs. Moreover, administration of BCL6 inhibitor FX1 arrested growth and development. FX1-treated BPD mice exhibited exacerbation of alveolar pathological changes and pulmonary vessel permeability, with upregulated mRNA levels of pro-inflammatory cytokines and pro-fibrogenic factors. Furthermore, both rAAV9-BCL6 and FX1 administration exerted a long-lasting effect on hyperoxia-induced lung injury (≥4 wk). CONCLUSIONS: BCL6 inhibits NLRP3-mediated inflammation, attenuates alveolar simplification and dysregulated pulmonary vessel development in hyperoxia-induced BPD mice. Hence, BCL6 may be a target in treating BPD and neonatal diseases.


Subject(s)
Bronchopulmonary Dysplasia , Hyperoxia , Lung Injury , Animals , Humans , Infant, Newborn , Mice , Animals, Newborn , Bronchopulmonary Dysplasia/etiology , Bronchopulmonary Dysplasia/metabolism , Disease Models, Animal , Endothelial Cells/pathology , Hyperoxia/metabolism , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Lung/metabolism , Lung Injury/drug therapy , Lung Injury/etiology , Lung Injury/prevention & control , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Proto-Oncogene Proteins c-bcl-6/metabolism , RNA, Messenger/metabolism
4.
MedComm (2020) ; 4(6): e448, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38077250

ABSTRACT

Staphylococcus aureus (SA) is a major cause of sepsis, leading to acute lung injury (ALI) characterized by inflammation and oxidative stress. However, the role of the Nrf2/PHB2 pathway in SA-induced ALI (SA-ALI) remains unclear. In this study, serum samples were collected from SA-sepsis patients, and a SA-ALI mouse model was established by grouping WT and Nrf2-/- mice after 6 h of intraperitoneal injection. A cell model simulating SA-ALI was developed using lipoteichoic acid (LTA) treatment. The results showed reduced serum Nrf2 levels in SA-sepsis patients, negatively correlated with the severity of ALI. In SA-ALI mice, downregulation of Nrf2 impaired mitochondrial function and exacerbated inflammation-induced ALI. Moreover, PHB2 translocation from mitochondria to the cytoplasm was observed in SA-ALI. The p-Nrf2/total-Nrf2 ratio increased in A549 cells with LTA concentration and treatment duration. Nrf2 overexpression in LTA-treated A549 cells elevated PHB2 content on the inner mitochondrial membrane, preserving genomic integrity, reducing oxidative stress, and inhibiting excessive mitochondrial division. Bioinformatic analysis and dual-luciferase reporter assay confirmed direct binding of Nrf2 to the PHB2 promoter, resulting in increased PHB2 expression. In conclusion, Nrf2 plays a role in alleviating SA-ALI by directly regulating PHB2 transcription and maintaining mitochondrial function in lung cells.

6.
Biomedicines ; 11(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37371773

ABSTRACT

The malfunction of vascular smooth muscle cells (VSMCs) is an initiating factor in the pathogenesis of pathological vascular remodeling, including hypertension-related vascular lesions. MicroRNAs (miRNAs) have been implicated in the pathogenesis of VSMC proliferation and migration in numerous cases of cardiovascular remodeling. The evidence for the regulatory role of miR-155-5p in the development of the cardiovascular system has been emerging. However, it was previously unclear whether miR-155-5p participated in the migration of VSMCs under hypertensive conditions. Thus, we aimed to define the exact role and action of miR-155-5p in VSMC migration by hypertension. Here, we detected that the level of miR-155-5p was lower in primary VSMCs from spontaneously hypertensive rats (SHRs). Its overexpression attenuated, while its depletion accelerated, the migration and oxidative damage of VSMCs from SHRs. Our dual-luciferase reporter assay showed that miRNA-155-5p directly targeted the 3'-untranslated region (3'-UTR) of BTB and CNC homology 1 (BACH1). The miR-155-5p mimic inhibited BACH1 upregulation in SHR VSMCs. By contrast, the deletion of miR-155-5p further elevated the upregulation of BACH1 in SHR-derived VSMCs. Importantly, the overexpression of miR-155-5p and knockdown of BACH1 had synergistic effects on the inhibition of VSMCs in hypertension. Collectively, miR-155-5p attenuates VSMC migration and ameliorates vascular remodeling in SHRs, via suppressing BACH1 expression.

7.
Inflamm Res ; 72(6): 1133-1145, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37169970

ABSTRACT

OBJECTIVES: Pulmonary fibrosis (PF) is a chronic and refractory interstitial lung disease with limited therapeutic options. 4-octyl itaconate (4-OI), a cell-permeable derivative of itaconate, has been shown to have anti-oxidative and anti-inflammatory properties. However, the effect and the underlying mechanism of 4-OI on PF are still unknown. METHODS: WT or Nrf2 knockout (Nrf2-/-) mice were intratracheally injected with bleomycin (BLM) to establish PF model and then treated with 4-OI. The mechanism study was performed by using RAW264.7 cells, primary macrophages, and conditional medium-cultured MLE-12 cells. RESULTS: 4-OI significantly alleviated BLM-induced PF and EMT process. Mechanism studies have found that 4-OI can not only directly inhibit EMT process, but also can reduce the production of TGF-ß1 by restraining macrophage M2 polarization, which in turn inhibits EMT process. Moreover, the effect of 4-OI on PF and EMT depends on Nrf2. CONCLUSION: 4-OI ameliorates BLM-induced PF in an Nrf2-dependent manner, and its role in alleviating PF is partly due to the direct inhibition on EMT, and partly through indirect inhibition of M2-mediated EMT. These findings suggested that 4-OI has great clinical potential to develop as a new anti-fibrotic agent for PF therapy.


Subject(s)
Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , NF-E2-Related Factor 2/genetics , Epithelial-Mesenchymal Transition , Bleomycin/adverse effects , Transforming Growth Factor beta1/pharmacology , Macrophages
8.
Food Funct ; 13(20): 10724-10736, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36177734

ABSTRACT

Intrauterine growth restriction (IUGR), one of the major complications of pregnancy, is characterized by low birth weight and results in higher risks for long-term problems including developing metabolic and cardiovascular diseases. Short-chain fatty acids (SCFAs), especially propionate, have been reported to correct glucose and lipid disorders in metabolic diseases. We hypothesized that maternal propionate supplementation could prevent glucose and lipid metabolic disturbance in hypoxia-induced IUGR. Here, in our study, maternal hypoxia was induced from gestational day (GD) 11 to GD 17.5 to establish an IUGR mouse model. Maternal propionate treatment reversed reduced birth weight in male IUGR offspring. Hepatic transcriptomics demonstrated that SP treatment significantly lowered glucose and lipid metabolism-related genes (Scd1, G6pc, Pck1 and Fasl) in IUGR offspring. KOG enrichment analysis showed that propionate-induced down-regulated differential expressed genes (DEGs) mainly belonged to lipid transport and metabolism. KEGG enrichment results showed that the down-regulated DEGs were mostly enriched in PPAR and FoxO signaling pathways. We also found that maternal oral administration of SP decreased serum lipid content, attenuated hepatic insulin resistance and liver lipid accumulation, reduced hepatic key gene expressions of gluconeogenesis and lipogenesis, increased energy expenditure and improved liver function in 11-week-old male IUGR offspring. These results indicate that maternal propionate supplementation increases birth weight and corrects hepatic glucose and lipid metabolic disturbance and energy expenditure in male mice born with IUGR, which may provide a basis for using propionate to treat IUGR disease.


Subject(s)
Fetal Growth Retardation , Glucose , Animals , Birth Weight , Dietary Supplements , Female , Fetal Growth Retardation/drug therapy , Fetal Growth Retardation/metabolism , Glucose/metabolism , Humans , Hypoxia/drug therapy , Liver/metabolism , Male , Mice , Peroxisome Proliferator-Activated Receptors/metabolism , Pregnancy , Propionates/metabolism
9.
Int J Mol Sci ; 22(18)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34575918

ABSTRACT

Dehydrocostus lactone (DHL), a natural sesquiterpene lactone isolated from the traditional Chinese herbs Saussurea lappa and Inula helenium L., has important anti-inflammatory properties used for treating colitis, fibrosis, and Gram-negative bacteria-induced acute lung injury (ALI). However, the effects of DHL on Gram-positive bacteria-induced macrophage activation and ALI remains unclear. In this study, we found that DHL inhibited the phosphorylation of p38 MAPK, the degradation of IκBα, and the activation and nuclear translocation of NF-κB p65, but enhanced the phosphorylation of AMP-activated protein kinase (AMPK) and the expression of Nrf2 and HO-1 in lipoteichoic acid (LTA)-stimulated RAW264.7 cells and primary bone-marrow-derived macrophages (BMDMs). Given the critical role of the p38 MAPK/NF-κB and AMPK/Nrf2 signaling pathways in the balance of M1/M2 macrophage polarization and inflammation, we speculated that DHL would also have an effect on macrophage polarization. Further studies verified that DHL promoted M2 macrophage polarization and reduced M1 polarization, then resulted in a decreased inflammatory response. An in vivo study also revealed that DHL exhibited anti-inflammatory effects and ameliorated methicillin-resistant Staphylococcus aureus (MRSA)-induced ALI. In addition, DHL treatment significantly inhibited the p38 MAPK/NF-κB pathway and activated AMPK/Nrf2 signaling, leading to accelerated switching of macrophages from M1 to M2 in the MRSA-induced murine ALI model. Collectively, these data demonstrated that DHL can promote macrophage polarization to an anti-inflammatory M2 phenotype via interfering in p38 MAPK/NF-κB signaling, as well as activating the AMPK/Nrf2 pathway in vitro and in vivo. Our results suggested that DHL might be a novel candidate for treating inflammatory diseases caused by Gram-positive bacteria.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Lactones/pharmacology , Macrophage Activation/drug effects , Macrophages/drug effects , Macrophages/immunology , Methicillin-Resistant Staphylococcus aureus/drug effects , Pneumonia, Staphylococcal/etiology , Sesquiterpenes/pharmacology , Acute Disease , Animals , Cell Plasticity/drug effects , Cell Plasticity/immunology , Disease Models, Animal , Macrophage Activation/immunology , Macrophages/metabolism , Mice , Models, Biological , NF-kappa B/metabolism , Phosphorylation , Pneumonia, Staphylococcal/drug therapy , Pneumonia, Staphylococcal/metabolism , Pneumonia, Staphylococcal/pathology , RAW 264.7 Cells , Signal Transduction/drug effects
10.
Acta Pharmacol Sin ; 42(12): 2069-2081, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34417573

ABSTRACT

Ethyl ferulate (EF) is abundant in Rhizoma Chuanxiong and grains (e.g., rice and maize) and possesses antioxidative, antiapoptotic, antirheumatic, and anti-inflammatory properties. However, its effect on lipopolysaccharide (LPS)-induced acute lung injury (ALI) is still unknown. In the present study, we found that EF significantly alleviated LPS-induced pathological damage and neutrophil infiltration and inhibited the gene expression of proinflammatory cytokines (TNF-α, IL-1ß, and IL-6) in murine lung tissues. Moreover, EF reduced the gene expression of TNF-α, IL-1ß, IL-6, and iNOS and decreased the production of NO in LPS-stimulated RAW264.7 cells and BMDMs. Mechanistic experiments revealed that EF prominently activated the AMPK/Nrf2 pathway and promoted Nrf2 nuclear translocation. AMPK inhibition (Compound C) and Nrf2 inhibition (ML385) abolished the beneficial effect of EF on the inflammatory response. Furthermore, the protective effect of EF on LPS-induced ALI was not observed in Nrf2 knockout mice. Taken together, the results of our study suggest that EF ameliorates LPS-induced ALI in an AMPK/Nrf2-dependent manner. These findings provide a foundation for developing EF as a new anti-inflammatory agent for LPS-induced ALI/ARDS therapy.


Subject(s)
Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/therapeutic use , Caffeic Acids/therapeutic use , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/complications , Acute Lung Injury/pathology , Animals , Cytokines/metabolism , Gene Knockout Techniques , Inflammation/complications , Inflammation/drug therapy , Lipopolysaccharides , Lung/drug effects , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Neutrophil Infiltration/drug effects , Neutrophils/drug effects , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/antagonists & inhibitors , RAW 264.7 Cells
11.
J Inflamm Res ; 14: 803-816, 2021.
Article in English | MEDLINE | ID: mdl-33732006

ABSTRACT

BACKGROUND: Alveolar arrest and the impaired angiogenesis caused by chronic inflammation and oxidative stress are two main factors in bronchopulmonary dysplasia (BPD). Short-chain fatty acids (SCFAs), especially propionate, possess anti-oxidant and anti-inflammatory effects. The present study was designed to examine the roles of sodium propionate (SP) on lipopolysaccharide (LPS)-challenged BPD and its potential mechanisms. METHODS: WT, Nrf2-/- mice and pulmonary microvascular endothelial cells (HPMECs) were used in this study. LPS was performed to mimic BPD model both in vivo and vitro. Lung histopathology, inflammation and oxidative stress-related mRNA expressions in lungs involved in BPD pathogenesis were investigated. In addition, cell viability and angiogenesis were also tested. RESULTS: The increased nuclear factor erythroid 2-related factor (Nrf2) and decreased Kelch-like ECH-associated protein-1 (Keap-1) expressions were observed after SP treatment in the LPS-induced neonatal mouse model of BPD. In LPS-induced wild-type but not Nrf2-/- neonatal mice, SP reduced pulmonary inflammation and oxidative stress and exhibited obvious pathological alterations of the alveoli. Moreover, in LPS-evoked HPMECs, SP accelerated Nrf2 nuclear translocation presented and exhibited cytoprotective and pro-angiogenesis effects. In addition, SP diminished the LPS-induced inflammatory response by blocking the activation of nuclear factor-kappa B pathway. Moreover, pretreatment with ML385, an Nrf2 specific inhibitor, offsets the beneficial effects of SP on inflammation, oxidative stress and angiogenesis in LPS-evoked HPMECs. CONCLUSION: SP protects against LPS-induced lung alveolar simplification and abnormal angiogenesis in neonatal mice and HPMECs in an Nrf2-dependent manner.

12.
Int Immunopharmacol ; 90: 107187, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33249045

ABSTRACT

Sophoricoside (SOP), an isoflavone glycoside isolated from seed of Sophora japonica L., has been reported to have various pharmacological activities, including anti-cancer, anti-allergy and anti-inflammation. However, the effect of SOP on lipopolysaccharides (LPS)-acute lung injury (ALI) is completely unclear. Here, we found that SOP pretreatment significantly ameliorated LPS-induced pathological damage, tissue permeability, neutrophil infiltration and the production of pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6) in a murine model of ALI. Besides, SOP reduced the production of pro-inflammatory mediators such as iNOS, NO and inflammatory cytokines including TNF-α, IL-1ß and IL-6 in LPS-stimulated RAW264.7 cells and bone marrow derived macrophages. Interestingly, treatment with SOP exhibited no effect on the activation of NF-κB and MAPKs in macrophages but prominently accelerated the expression and nuclear translocation of Nrf2. By using ML385, a specific Nrf2 inhibitor, we found that inhibition of Nrf2 abolished the inhibitory effect of SOP on LPS-induced iNOS expression, NO production as well as pro-inflammatory cytokine generation. SOP also activated AMPK, an upstream protein of Nrf2, under LPS stimuli. Furthermore, we demonstrated that the accelerated expression of Nrf2 induced by SOP was reversed by interference with the AMPK inhibitor Compound C. Taken together, our results suggested that SOP attenuated LPS-induced ALI in AMPK/Nrf2 dependent manner and indicated that SOP might be a potential therapeutic candidate for treating ALI/ARDS.


Subject(s)
Acute Lung Injury/prevention & control , Anti-Inflammatory Agents/pharmacology , Benzopyrans/pharmacology , Lung/drug effects , Macrophages/drug effects , NF-E2-Related Factor 2/metabolism , Pneumonia/prevention & control , AMP-Activated Protein Kinases/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/enzymology , Acute Lung Injury/pathology , Animals , Cytokines/metabolism , Disease Models, Animal , Inflammation Mediators/metabolism , Lipopolysaccharides , Lung/enzymology , Lung/pathology , Macrophages/enzymology , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Pneumonia/chemically induced , Pneumonia/enzymology , Pneumonia/pathology , RAW 264.7 Cells , Signal Transduction
13.
Int Immunopharmacol ; 90: 107221, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33293260

ABSTRACT

Salvinorin A (SA), a neoclerodane diterpene, is isolated from the dried leaves ofSalvia divinorum. SA has traditionally been used treatments for chronic pain diseases. Recent research has demonstrated that SA possesses the anti-inflammatory property. The present study aim to explore the effects and potentialmechanisms ofSA in protection against Methicillin Resistant Staphylococcus aureus (MRSA)-induced acute lung injury (ALI). Here, we firstly found that verylowdosesof SA (50 µg/kg) could markedly decrease the infiltration of pulmonary neutrophils, mRNA expression of pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6) and then attenuated ALI cause by MRSA infection in mice. In vitro findings revealed that SA attenuated lipoteichoicacid-induced apoptosis, inflammation and oxidative stress in RAW264.7 cells. Mechanism research revealed that SA increased both mRNA levels and protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and up-regulated mRNA expression of its downstream genes (HO-1, Gclm, Trx-1, SOD1 and SOD2). Additionally, Nrf2 knockout mice abolished the inhibitory effect of SA on neutrophil accumulation and oxidative stress in MRSA-induced ALI. In conclusion, SA attenuates MRSA-induced ALI via Nrf2 signaling pathways.


Subject(s)
Acute Lung Injury/prevention & control , Anti-Inflammatory Agents/pharmacology , Diterpenes, Clerodane/pharmacology , Lung/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , NF-E2-Related Factor 2/metabolism , Pneumonia, Staphylococcal/prevention & control , Acute Lung Injury/metabolism , Acute Lung Injury/microbiology , Acute Lung Injury/pathology , Animals , Cytokines/metabolism , Disease Models, Animal , Inflammation Mediators/metabolism , Lung/metabolism , Lung/microbiology , Lung/pathology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/microbiology , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/genetics , Neutrophil Infiltration/drug effects , Oxidative Stress/drug effects , Pneumonia, Staphylococcal/metabolism , Pneumonia, Staphylococcal/microbiology , Pneumonia, Staphylococcal/pathology , RAW 264.7 Cells , Signal Transduction
14.
Respir Res ; 21(1): 232, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32907551

ABSTRACT

BACKGROUND: Ferroptosis is a new type of nonapoptotic cell death model that was closely related to reactive oxygen species (ROS) accumulation. Seawater drowning-induced acute lung injury (ALI) which is caused by severe oxidative stress injury, has been a major cause of accidental death worldwide. The latest evidences indicate nuclear factor (erythroid-derived 2)-like 2 (Nrf2) suppress ferroptosis and maintain cellular redox balance. Here, we test the hypothesis that activation of Nrf2 pathway attenuates seawater drowning-induced ALI via inhibiting ferroptosis. METHODS: we performed studies using Nrf2-specific agonist (dimethyl fumarate), Nrf2 inhibitor (ML385), Nrf2-knockout mice and ferroptosis inhibitor (Ferrostatin-1) to investigate the potential roles of Nrf2 on seawater drowning-induced ALI and the underlying mechanisms. RESULTS: Our data shows that Nrf2 activator dimethyl fumarate could increase cell viability, reduced the levels of intracellular ROS and lipid ROS, prevented glutathione depletion and lipid peroxide accumulation, increased FTH1 and GPX4 mRNA expression, and maintained mitochondrial membrane potential in MLE-12 cells. However, ML385 promoted cell death and lipid ROS production in MLE-12 cells. Furthermore, the lung injury became more aggravated in the Nrf2-knockout mice than that in WT mice after seawater drowning. CONCLUSIONS: These results suggested that Nrf2 can inhibit ferroptosis and therefore alleviate ALI induced by seawater drowning. The effectiveness of ferroptosis inhibition by Nrf2 provides a novel therapeutic target for seawater drowning-induced ALI.


Subject(s)
Acute Lung Injury/metabolism , Drowning/metabolism , Ferroptosis/physiology , NF-E2-Related Factor 2/metabolism , Seawater/adverse effects , Acute Lung Injury/etiology , Acute Lung Injury/prevention & control , Animals , Cell Line , Drowning/etiology , Drowning/prevention & control , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Respiratory Mucosa/metabolism
16.
J Agric Food Chem ; 68(24): 6554-6563, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32452677

ABSTRACT

Short-chain fatty acids (SCFAs), especially propionate, originate from the fermentation of dietary fiber in the gut and play a key role in inhibiting pulmonary inflammation. Chronic inflammation may induce an epithelial-mesenchymal transition (EMT) in alveolar epithelial cells and result in fibrotic disorders. This study was designed to investigate the beneficial effect of sodium propionate (SP) on lipopolysaccharide (LPS)-induced EMT. In cultured BEAS-2B cells, the protein expression levels of E-cadherin, α-smooth muscle actin (SMA), and vimentin were 0.66 ± 0.20, 1.44 ± 0.23, and 1.32 ± 0.21 in the LPS group vs 1.11 ± 0.36 (P < 0.05), 1.04 ± 0.30 (P < 0.05), and 0.96 ± 0.13 (P < 0.01) in the LPS + SP group (mean ± standard deviation), respectively. Meanwhile, LPS-triggered inflammatory cytokines and extracellular proteins were also reduced by SP administration in BEAS-2B cells. Moreover, SP treatment attenuated inflammation, EMT, extracellular matrix (ECM) deposition, and even fibrosis in a mouse EMT model. In terms of mechanism, LPS-treated BEAS-2B cells exhibited a higher level of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) phosphorylation, which was interrupted by SP treatment. It is worth noting that the blockade of the PI3K/Akt/mTOR signaling cascade reduced the LPS-evoked EMT process in BEAS-2B cells. These results suggest that SP can block LPS-induced EMT via inhibition of the PI3K/Akt/mTOR signaling cascade, which provides a basis for possible clinical use of SP in airway and lung diseases.


Subject(s)
Epithelial-Mesenchymal Transition/drug effects , Lipopolysaccharides/pharmacology , Lung Diseases/drug therapy , Phosphatidylinositol 3-Kinase/metabolism , Propionates/administration & dosage , Proto-Oncogene Proteins c-akt/metabolism , Actins/genetics , Actins/metabolism , Animals , Cadherins/genetics , Cadherins/metabolism , Humans , Lung Diseases/genetics , Lung Diseases/metabolism , Lung Diseases/physiopathology , Male , Mice , Phosphatidylinositol 3-Kinase/genetics , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Vimentin/genetics , Vimentin/metabolism
18.
Phytomedicine ; 67: 153138, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31881478

ABSTRACT

BACKGROUND: Hypoxia is commonly existed in tumors and lead to cancer cell chemo/radio-resistance. It is well-recognized that tumor hypoxia is a major challenge for the treatment of various solid tumors. Hyperoside (quercetin-3-O-galactoside, Hy) possesses antioxidant effects and has been reported to protect against hypoxia/reoxygenation induced injury in cardiomyocytes. Therefore, Hy may be attractive compound applicable to hypoxia-related diseases. PURPOSE: This study was designed to determine the role of Hy in hypoxia-induced proliferation of non-small cell lung cancer cells and the underlying mechanism. STUDY DESIGN AND METHODS: A549, a human non-small cell lung cancer (NSCLC) cell line, was used in the present study. 1% O2 was used to mimic the in vivo hypoxic condition of NSCLC. The potential mechanisms of Hy on hypoxia-induced A549 survival and proliferation, as well as the involvement of AMPK/HO-1 pathway were studied via CCK-8 assay, EdU staining, flow cytometry, qRT-PCR and western blot. RESULTS: We showed that pretreatment with Hy suppressed hypoxia-induced A549 survival and proliferation in dose-dependent manner. In terms of mechanism, hypoxia-treated A549 showed the lower AMPK phosphorylation and the reduced HO-1 expression, which were reversed by Hy pretreatment. Both AMPK inhibitor (Compound C) and HO-1 activity inhibitor (Zinc protoporphyrin IX) abolished Hy-evoked A549 cell death under hypoxia stimuli. Of note, Ferrous iron contributed to Hy-induced A549 cell death under hypoxia, while Hy had no effect on lipid peroxidation under hypoxia. CONCLUSION: Taken together, our results highlighted the beneficial role of Hy against hypoxia-induced A549 survival and proliferation through ferrous accumulation via AMPK/HO-1 axis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Heme Oxygenase-1/metabolism , Quercetin/analogs & derivatives , Tumor Hypoxia/drug effects , A549 Cells , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Heme Oxygenase-1/antagonists & inhibitors , Humans , Iron/metabolism , Phosphorylation/drug effects , Protoporphyrins/pharmacology , Quercetin/administration & dosage , Quercetin/pharmacology
19.
Onco Targets Ther ; 12: 8379-8386, 2019.
Article in English | MEDLINE | ID: mdl-31632085

ABSTRACT

OBJECTIVE: To evaluate the impact of systematic nutrition management (SNM) on nutritional status, treatment-related toxicity, quality of life (QoL), response rates, and survival in patients with locally advanced nasopharyngeal carcinoma (LA-NPC) treated by radiotherapy (RT). METHODS: In this retrospective study, 56 patients with LA-NPC were selected as nutrition management group (NG) for SNM during RT till 1 month later. Another 56 patients with LA-NPC receiving RT without SNM as control group (CG) were identified from the hospital database and matched pairs with NG patients according to age, gender, stage, and body mass index (BMI) prior to RT. RESULTS: At 1 month after RT, the percentage of malnourished patients with BMI <18.5 kg/m2 was statistically significant reduced in NG as compared to the CG group (35.7% vs 58.9%, P=0.014). Nutritional indexes of body weight, hemoglobin, prealbumin, and lymphocyte in the NG were statistically significant higher than those in the CG group (P<0.05). NG patients had statistically significant less grade 3-4 oral mucositis during RT compared with the CG group (32.1% vs 51.8%, P=0.035). Furthermore, at 1 month after RT, an improved QoL was observed in NG patients with respect to physical, role and social functions, symptom scales of fatigue and pain, and the global health status as compared to the CG group (P<0.05). With a median follow-up of 24.8 months, there were no statistical differences between NG and CG (P>0.05) for the 2-year progression-free survival and overall survival (84.2% versus 79.5% and 94.7% versus 92.3%, respectively.). CONCLUSION: SNM for LA-NPC patients treated by RT resulted in better nutritional status, reduced treatment-related toxicity and improved QoL.

20.
Int Immunopharmacol ; 74: 105634, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31254959

ABSTRACT

OBJECTIVE: Heme oxygenase-1 (HO-1) plays a critical protective role in various insults-induced acute lung injury (ALI) through its strong anti-inflammatory, anti-oxidant, and anti-apoptotic properties, but its protective role and mechanism on seawater aspiration-induced acute lung injury remains unclear. This study aimed to explore the therapeutic potential and mechanism of HO-1 to attenuate seawater aspiration-induced ALI in vivo and in vitro. METHODS: The viability and invasion of A549 cell were analyzed through cell counting kit-8 and lactate dehydrogenase release assay; the transcriptional level of inflammatory cytokines (TNF-α, IL-6, IL-8 and MCP-1) and cell proliferation-related cytokines (FoxM1, Ccnb1 and Cdc25C) in seawater-treated A549 cell were tested by qPCR; apoptotic cells were analyzed by flow cytometryd; HO-1mRNA and protein were determined by qPCR and western blotting; the fluorescent indicators (DCFH-DA, dihydroethidium, MitoSox Red and Fluo-4) were used to monitor generation of ROS and mitochondrial function. The lung wet/dry weight radio and lactate dehydrogenase activity, Sirius red staining, TUNEL assay and immunohistochemical staining with anti-pan Cytokeratin antibody were analyzed in seawater-drowning mice. The role of HO-1 on seawater-drowning pulmonary injury was explored via HO-1 activity inhibitors (Zinc protoporphyrin) in vitro and in vivo. RESULTS: Seawater exposure decreased the cellular viability, increased the production of pro-inflammatory cytokines (IL-6, IL-8 and TNF-α), induced cellular apoptosis and inhibited the expression of cell proliferation-related cytokines (FoxM1, Ccnb1 and Cdc25C). Moreover, seawater exposure led to mitochondrial dysfunction in A549 cells. Supplement of HO-1 sepcific inducer (heme) or its catalytic product (biliverdin) significantly attenuated seawater-induced A549 damage and promoted cell proliferation. However, Zinc protoporphyrin abolished the beneficial effects of HO-1 on seawater drowning-induced pulmonary tissue injury. CONCLUSION: HO-1 attenuates seawater drowning-induced lung injury by its anti-inflammatory, anti-oxidative, and anti-apoptosis function.


Subject(s)
Acute Lung Injury/metabolism , Drowning/metabolism , Heme Oxygenase-1/metabolism , A549 Cells , Animals , Biliverdine/metabolism , Cell Proliferation , Cytokines/genetics , Humans , Inflammation/metabolism , Male , Mice, Inbred BALB C , Oxidative Stress , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL